
Unci: a C++-based Unit-testing Framework
for Intro Students

Don Blaheta
Longwood University
Farmville, VA, USA

blahetadp@longwood.edu

ABSTRACT
This paper describes Unci, a unit-testing language with a
clean and minimal interface suitable for introducing begin-
ning programming students to the ideas of unit testing and
test-driven development. We detail why CppUnit, a com-
mon C++-based unit-testing framework, is not well-suited
for beginners, and present Unci and explain how it addresses
the weaknesses of CppUnit. Finally, we present a compari-
son of CS2 student performance in the two systems, showing
that moving from CppUnit to Unci resulted in an approx-
imate doubling in the proportion of students able to write
an effective test suite for a lab assignment.

Categories and Subject Descriptors
D.2.5 [Software engineering]: Testing and debugging—
Testing tools; K.3.2 [Computers and Education]: Com-
puter and Information Science Education—Computer sci-
ence education

General Terms
Design, Human factors

Keywords
Test-driven development; unit testing; CS1; CS2

1. TEST-DRIVEN DEVELOPMENT IN
INTRODUCTORY COURSES

Test-driven development (TDD) is by now a well-established
framework for software engineering [1, 5], promoting the
idea of developing an application’s testing framework be-
fore and during, rather than after, the main code develop-
ment; this is intended to solidify understanding of a project’s
requirements early in the project and improve communica-
tion about those requirements, as well as making the tests
themselves less likely to be dependent on particular design

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE’15, March 4–7, 2015, Kansas City, MO, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2966-8/15/03 ...$15.00.
http://dx.doi.org/10.1145/2676723.2677228.

choices, hence more likely to be robust. A number of ed-
ucators have argued that TDD is pedagogically effective,
even (or especially) in introductory programming courses [4,
7, 10]. Reasons for this mirror the reasons it is seen as
effective as a general software engineering technique: for
instance, students can better understand an example if it
includes both an interface and an expected result [6], and
having a written artifact of the student’s understanding of
the project requirements is helpful if the student needs to
ask a question of a TA or professor (who can then quickly
verify that the assumptions are correct before trying to an-
swer the question) [11]. From a more cognitive perspective,
an intro student—initially overwhelmed by the open-ended
task of starting to write code—is well-served by having to
first answer the more-constrained question of what a specific
function call, with a specific, concrete parameter, should re-
turn. In addition, suites of discrete unit tests can be seen
as an effective way to perform automatic grading of student
work, decreasing grading load for the professor or teaching
staff as well as giving the students more rapid feedback on
their work [4].

Frameworks to support unit testing and test-driven devel-
opment have been written for many programming languages.
For Java, the original and most widespread is JUnit [8], al-
though others exist to serve various specific niches, including
at least one, tester [10], which was designed specifically for
intro students. For C++, the unit testing landscape is much
more fragmented. CppUnit [2], developed as a port of JUnit,
is widespread but a variety of others exist.

At our institution, the introductory CS1/CS2 sequence is
taught using C++. When deciding to integrate unit testing
into these early courses, we looked at several of the avail-
able options, settling on CppUnit: with none of the options
apparently targeting the intro programming student, we de-
cided to at least choose one with some wider use.

2. PROBLEMS WITH CPPUNIT
In the Fall 2013 offering of our CS2 course, students were

introduced to the concept of unit testing in week 3 (of 14);
in their lab section during that week, they were given a
template file similar to that shown in Figure 1 to work from,
and instructions on how to adapt it to write test cases. Four
of the remaining weekly labs contained specific additional
instructions on CppUnit syntax or semantics, and two more
of the labs did not give additional instructions but included
“testing” among their rubric requirements.

We deemed it crucial to give a template for the students to
use, not just the first time they were introduced to CppUnit

#include <cppunit/TestFixture.h>

#include <cppunit/TextTestRunner.h>

#include <cppunit/extensions/HelperMacros.h>

#include "Xxx.h"

class Xxx_test : public CppUnit::TestFixture

{

CPPUNIT_TEST_SUITE(Xxx_test);

CPPUNIT_TEST(test_somethingMethod);

CPPUNIT_TEST_SUITE_END();

private:

Xxx example1;

public:

void setUp()

{

example1 = Xxx (arg1, arg2);

}

void test_somethingMethod()

{

CPPUNIT_ASSERT_EQUAL (42, example1.something());

}

};

int main(int argc, char **argv)

{

CppUnit::TextTestRunner runner;

runner.addTest(Xxx_test::suite());

runner.run();

return 0;

}

Figure 1: A minimal CppUnit file

but for the entire rest of the term. A minimal file using
CppUnit to implement unit tests—if it is meant to stand
alone—must in general contain:

• Three #include lines at the top

• A class that inherits from CppUnit::TestFixture

• A series of macro calls to build the test suite (where
the macro arguments must be the name of the class
itself as well as the names of each method designated
as a test), and

• A four-line main function to bootstrap the test suite
runner.

This boilerplate material must be present in addition to the
declaration of any fixture variables, and a setUp method to
give their initial values, and the test methods themselves. It
was our hope that by providing a template file, the boiler-
plate could be abstracted away and the students could focus
on the conceptually important part: what do objects of this
type look like, and how should they behave?

There was, however, a great deal of friction involved in in-
troducing CppUnit-based unit testing: problems that were
not with the core concept of unit testing or with understand-
ing of what the test cases ought to be, but with the frame-
work itself. Some of these were relatively minor, such as mis-
remembering which argument to CPPUNIT_ASSERT_EQUALS is
the expression to check and which is the expected return

value. But many were more major, causing subtle bugs or
otherwise delaying or preventing them from addressing the
“real” content of the lab.

For instance, a frequent student error was creating a test
method and not adding it to the suite. This results in a
syntactically valid class that compiles and runs, but doesn’t
execute that test—meaning the student either assumes a test
is passing when it wouldn’t, or notices the missing test and
loses time trying to figure out what’s wrong.

An even larger problem came when students inadvertently
made errors in the macros constructing the test suite. Since
C++ macros are based purely on text substitution, prob-
lems here result in error messages that are utterly incompre-
hensible to beginners. If a student writes CPPUNIT_TEST in
place of CPPUNIT_TEST_SUITE—an easy mistake for a begin-
ner who doesn’t yet understand what these lines are doing—
the resulting error message says“’context’ does not name

a type”, which is unhelpful at best (although the error does
at least indicate the correct line number). The reverse mis-
take is even worse: it causes the error “expected ’}’ at

end of input” and points to the last line of the file. Other
mistakes that yield unhelpful or misleading error messages
include changing the header of a test method or omitting the
inheritance from TestFixture in the class header. This sort
of misdirection can cost a student hours of fruitless, wasted
debugging time, and it prevents them from progressing with
the lab.

A further set of problems arose from the fact that fix-
ture values look just like (and technically are) instance vari-
ables. In most other circumstances, instance variables would
be used for values that are meant to persist across method
calls; but in the case of the test suite, this is almost exactly
the opposite of what happens, since the variables are reset
to their initial values before each test method is run. The
reasons behind this are good and fairly interesting, but also
subtle and somewhat sophisticated, and this is a source of
confusion for students who have just been introducted to
object-oriented design.

There are other C++-based unit testing frameworks, of
course, but to a greater or lesser extent, they appear to suf-
fer from the same problems in an intro context. For instance,
UnitTest++[13] requires its own #include and boilerplate
main function, albeit shorter than those for CppUnit, and
works through the preprocessing system to create SUITE and
TEST macros; the fixture, if any, is a user-defined class sep-
arate from the test suite (and must be named in the header
to every test case). libunittest[9] is similar to UnitTest++
except that it can define its own main. Unit++[12] steers
clear of the preprocessor but requires individual registration
of each test, and uses some fairly exotic syntax (method
pointers) and dispreferred techniques (global variables) to
get all the pieces to talk to each other; it doesn’t appear to
support fixtures at all. xUnit++[14] leverages a number of
C++11 features to offer extra power to the programmer, but
they largely don’t help the intro student; it is again macro-
based, and fixtures must be built by hand and named at the
top of each test case. CxxTest[3] takes the promising step of
running as a preprocessor (so it doesn’t need a boilerplate
main) but again uses the C++ preprocessor for the assertions
and requires substantial amounts of C++ code to wrap the
tests; its fixtures are essentially identical to CppUnit’s.

Many of these difficulties are more or less intrinsic to a
library-based solution in a language like C++; the limited

#include "Xxx.h"

test suite Xxx_test

{

fixture:

Xxx example1 = Xxx(arg1, arg2);

tests:

test somethingMethod

{

check (example1.something()) expect == 42;

}

}

Figure 2: A minimal Unci file

preprocessing capability in C++ itself doesn’t let a library
writer introduce new syntax or create constructs that would
generate substantially reordered or restructured code. As a
result, simply trying to fork the CppUnit development (or
making a pull request to get changes into CppUnit proper)
would not adequately address these issues.

3. A NEW UNIT-TESTING LANGUAGE
To address these concerns, we began developing Unci, a

language specifically designed to be a clean interface for
writing unit tests. Its syntax would be enough like C++

to feel “comfortable” to students working in that language,
but would have the freedom to diverge from C++ when that
would yield an improvement in clarity. The main design
objectives for this new language were that:

• Users could include a fixture with arbitrary data and
arbitrary number of distinct test cases

• Users could include arbitrary C++ code in tests

• It require minimal or no“boilerplate”code that is iden-
tical for every file

• Its syntax be accessible to beginners with no unit test-
ing experience and relatively little programming back-
ground

• Its test syntax would clearly indicate what is being
tested and what outcome is expected

• Any errors in Unci code would be flagged by the Unci
compiler, with a helpful error message

• Any errors in embedded C++ code would be passed
through to the C++ compiler, to yield the same error
message as in other C++ code with the same mistake

The first two of these are present in CppUnit (and other
testing libraries had various combinations of the first three),
and it was important not to lose those central features in the
course of designing the new language. The remainder were in
service of our goal of producing a pedagogically appropriate
introductory C++-based unit testing framework.

Figure 2 shows an Unci test file with exactly the same
semantics as the CppUnit test file in Figure 1. The most
obvious change is that all the parts of the CppUnit version
that were either always the same or derivable from other

parts of the file can be omitted in the Unci source, mak-
ing it far shorter (and far less susceptible to typo bugs). In
what remains, every piece is semantically important; and
by using semantically-appropriate labels (“test suite” in-
stead of “class”, “fixture” instead of “private”, etc), the
beginner student can see and reinforce the connection to
the terminology they’re learning to talk about unit testing
in general. Indeed, by separating the fixture section from
the tests section and labelling them, we preserve a useful
semantic distinction instead of having a fixture that is part
private and part public, or a public section that includes
both setup code and individual tests.

3.1 Parts of an Unci file
The top portion of an Unci file can contain #include di-

rectives, using directives (such as using namespace std;),
and comments. Anything else is a syntax error; in partic-
ular, we wished to channel students away from declaring
global variables in this context.

The remainder of the file is a block headed by test suite

and given a name. The name is not significant but will be
munged into a class name by preceding it with “Unci_”.

The suite block contains two parts: the fixture and the
tests. Both are optional, but if present they must occur in
that order. Since the fixture is optional, it would be possible
to write a suite comprised only of independent tests (perhaps
in the weeks before fixtures are introduced). The reason the
tests are optional is that in a data-first design pedagogy (as
in Program By Design [11]) the students are expected to
give examples of data first, before any tests are written, and
it is useful to be able to compile at this stage.

Within the fixture, every variable must be separately de-
clared in the form

type varname = value-expr ;

This is true even if the type in question is a class type and
the intended initial value is that provided by the default
constructor. Because a class’s default constructor is not au-
tomatically defined if any other constructor is defined, any
code that implicitly requires the default constructor to exist
may trigger a compiler error; this error is confusing to stu-
dents just learning about default constructors (and implicit
object construction and constructor overloading), because
they don’t understand what part of the code they’ve writ-
ten is actually calling that constructor. By requiring an
explicit call to the default constructor here (if that’s what is
intended), beginner programmers have a better understand-
ing of why the compiler thinks they need to define it in the
class definition.

For fixture values that cannot be constructed in a single
expression (for instance, container data structures that need
to be constructed empty and then have an add or insert

method called), and for fixture data that requires cleanup,
the user may define a setup block and/or a teardown block
containing arbitrary C++ code, as shown in Figure 3.

The tests section (if present) must contain nothing but
test blocks, each preceded by the word test and an arbi-
trary (but distinct) label. Some students were a little frus-
trated that they couldn’t put fixture variable declarations
between the test blocks, but this seemed to arise from a
misunderstanding of the role of the fixture (that they are
available to all tests, and that they reset to initial values be-
fore each test). As such, preventing anything but test blocks

fixture:

Set<string>* onlyFoo = new VectorSet<string>();

Set<int>* twoFive = new VectorSet<int>();

setup

{

onlyFoo->add("foo");

for (int i = 2; i <= 5; ++i)

twoFive->add(i);

}

teardown

{

delete onlyFoo;

delete twoFive;

}

Figure 3: A sample Unci fixture

in the tests section seems to be a useful constraint as the
students are developing their understanding of test-driven
development.

The test blocks themselves will normally contain some
number of check/expect statements, but these can be inter-
spersed with almost completely arbitrary C++ code. The
chief restriction is that check is a partially-reserved key-
word and can’t be used as variable or function name in a
statement-initial position.

3.2 Check/expect statements
One of the major contributions of Unci is introducing

to the C++ unit-testing ecosystem a new, uniform syntax
specifically designed for testing: the check/expect state-
ment. Regardless of what assertion is being made, these
statements take the form

check (expression)

followed by an assertion about what is supposed to happen,
headed by the keyword expect:

expect == value; A basic equality assertion. The given
value must be of the same type as the expression being
tested. This makes very explicit that the == operator
is what is being used to perform the test.

expect < value; By making the == explicit when that is
wanted, we reserved a natural place in the syntax for
the other comparison operators: <, >, <=, >=, and !=.
Any of these can be used to make an assertion about
an expected result.

expect true; Most testing libraries (including CppUnit)
have a simple ASSERT form that represents an as-
sertion that some expression is true, but it is helpful
to make that expectation explicit. Intro students are
often not yet comfortable with the idea of first-class
boolean values; they find it strange to “assert an ex-
pression” but much more comfortable to “assert that
an expression is true”.

expect false; Many students at this level have yet to fully
come to terms with the use of not to negate arbitrary

tests:

test contains

{

check (onlyFoo->contains("foo")) expect true;

check (onlyFoo->contains("bar")) expect false;

check (twoFive->contains(4)) expect true;

check (twoFive->contains(7)) expect false;

}

test size

{

check (onlyFoo->size()) expect == 1;

check (twoFive->size()) expect == 4;

}

test remove

{

twoFive->remove(5);

check (twoFive->contains(2)) expect true;

check (twoFive->contains(5)) expect false;

check (twoFive->size()) expect == 3;

}

test unrelatedFloat

{

double frac = (1.0 / 6.0) * 10000;

check (frac) expect about 10000.0 / 6 +- 0.00001;

}

Figure 4: Sample Unci tests using fixture from Fig. 3

boolean expressions, particularly in an assertion con-
text. They also appreciate the symmetry between ex-

pect true and expect false, and this furthermore
makes series of boolean check/expect statements eas-
ier to read and edit.

expect about value +- tolerance; Floating point math is
inexact, and test cases involving floating point num-
bers should properly include a tolerance on either side
of the expected value. In this case about and +- are
keywords and reinforce the idea that the testing opera-
tion is not using == (notwithstanding the fact that the
analogous assertion in CppUnit is a three-parameter
macro named CPPUNIT_ASSERT_DOUBLES_EQUAL, or that
JUnit simply uses an assertEquals method with a
third argument for this purpose).

A sample tests section is shown in Figure 4, using the fix-
ture from Figure 3 to test a few standard operations from
the Set ADT as well as illustrating the use of the inexact
“expect about” assertion.

This syntax is the one place we diverged from the most
widespread unit-testing terminology, which usually uses some
form of the word assert here. However, we wanted to be
able to syntactically separate the testable expression from
the expected outcome, and we wanted to avoid using es-
tablished keywords with different meanings. (The C++ ver-
sion of assert, while not technically a keyword, is a well-
established part of the standard library, available in the
<cassert> header.) Our usage of check and expect is in-
spired by, though not identical to, that seen in the Program
By Design curriculum [10].

4. RESULTS
The initial roll-out of Unci was to the Spring 2014 sections

of our CS2 course. The overall content of the course was

Doesn’t Total Total
N No handin compile No real test no testing Light tests All one fn Good tests testing

F13/CppUnit N=11 2 (18%) 1 (9%) 3 (27%) 55% 1 (9%) 1 (9%) 3 (27%) 45%
S14/Unci N=27 3 (11%) 4 (15%) 0 (—) 26% 4 (15%) 5 (19%) 11 (41%) 74%

Table 1: Test suite quality on Lab 9

No handin/ Doesn’t Total Total
N no suite compile Fixture only no testing Some tests All tests testing

F13/CppUnit N=11 2 (18%) 1 (9%) 4 (36%) 64% 0 (—) 4 (36%) 36%
S14/Unci N=27 3 (11%) 2 (7%) 2 (7%) 25% 5 (19%) 15 (56%) 75%

Table 2: Test suite quality on Lab 11

unchanged from the previous term, and the student body
comparable—in both cases coming directly out of a CS1
course the previous term—but all CppUnit-based content
was replaced with Unci-based content. There was no longer
a need to provide a template file for the students to copy
whenever they wanted to create a new test suite, and the
students were no longer getting stuck on misleading macro-
related error messages.

In the assignment where unit testing was first introduced
(the lab during week 3), there were fairly detailed instruc-
tions on what to type and how to build the test suite file.
Perhaps as a result, both the CppUnit students and the Unci
students were generally able to complete this by the end of
the allotted week. A more interesting comparison can be
seen in two assignments later in the term.

During week 9, the lab assignment was primarily focussed
on the Set ADT: specifying what operations it should sup-
port, and then writing multiple implementations of it. Part
of this process was to write appropriate unit tests for the
data structure; but as the students had been practicing writ-
ing test cases for several weeks at this point, the lab instruc-
tions (during both terms) gave no detail on how to write the
test suite. Student performance on the test suite portion of
this lab diverged substantially between the two terms.

We coded all student submissions on this assignment, from
both terms, into six categories (themselves grouped into two
larger categories), presented in Table 1. A small number of
students did not hand in the assignment at all. Of those who
did, some had test suites that did not successfully compile,
and others were technically able to make the file compile
but couldn’t figure out how to put any test cases in it. Stu-
dents in these three categories clearly were not benefiting
from test-driven development on this assignment (although
in some cases they were able to successfully implement other
parts of the assignment anyway).

The remainder of the students were able to implement at
least some testing for their assignment. In some cases the
testing was “light”, in that there were multiple test functions
or test blocks, but only with a single assertion—hence not
a thorough test. A number of students implemented a series
of statements and assertions that was reasonably thorough,
but put all of them in a single function or block, thus not
operating as a unit test and not taking advantage of the test
fixture. Finally, some students were able to write multiple
unit tests, covering multiple cases for most or all of the ADT
operations. The proportion of students in the latter category
went up considerably among the students who wrote their

tests using Unci instead of CppUnit: only 27% of the stu-
dents successfully navigated CppUnit to build a reasonably
good test suite, while 41% were able to do so with Unci.
The proportion of students who successfully did any testing
at all on this assignment rose from 45% to 74%.

Two weeks later, students were given a lab involving bi-
nary trees and functions that operate on them, and once
again they were expected to write a test suite from scratch
with no new instructions on how to do so. Performance on
this task is recorded in Table 2, with categories similar to
those described above; here the third category refers to those
students that successfully built binary trees for the test fix-
ture but wrote no tests for them, and the fourth category
covers students that wrote some tests but did not cover all
five of the functions required for the lab. As with Lab 9, the
best students in the CppUnit section were able to write test
cases as requested, but the weak and middle students—who
in many ways might benefit most from TDD—were unable
to get any test cases written. In the Unci sections, however,
most of the students were able to write all the necessary
test cases and a wide majority succesfully wrote at least
some test cases. The proportion of students able to run au-
tomated tests on their code here rose from 36% to 75%. The
number of students in each group is low—11 in the CppUnit
section, 27 in the Unci sections—but the performance dif-
ference is large enough to be persuasive.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have presented Unci, a new unit test-

ing framework for C++ that is more accessible to intro-
ductory programmers than the alternatives. It provides a
layer of abstraction so that one can write a test suite with-
out understanding the implementation details of the testing
engine itself; and the syntax it uses is powerful but con-
strained enough to steer inexperienced programmers toward
good testing practices and (when possible) away from several
easy-to-make beginner mistakes. When used in a CS2 pro-
gramming course, students writing their tests in Unci were
much more likely to be able to successfully write example
data and test cases that would compile and test their code.

Unci is in many ways still what the entrepreneurs call
a “minimum viable product”. There are a number of areas
where we plan to improve it. There are other assertion types
that would be helpful, including array equality and contain-
ment, as well as testing that student code correctly throws
exceptions. (Indeed, our parser already supports Unci syn-
tax for these expect types, but the compiler does not yet

produce code for them.) It would be convenient to be able
to compile multiple Unci test suites together into a single
test executable. Currently, the Unci compiler outputs code
that uses the CppUnit macro system, but it will be better to
bypass the macros; it would perhaps eventually be good to
bypass CppUnit entirely, although continuing to target Cp-
pUnit as an intermediate form may be helpful in the short
term as we aim for integration with popular C++ IDEs. Fi-
nally, there are a few C++11 language features (notably the
new curly-bracket-based uniform initialisation syntax) that
the Unci parser does not correctly support, which needs to
be fixed before those features start making their way into
intro textbooks. We continue to use Unci in our CS2 course
and consider it to be under active development.

We would also be interested in running larger-scale test-
ing to confirm Unci’s helpfulness for students in other C++-
based intro curricula.

6. INSTALLATION AND AVAILABILITY
The code and installation instructions are available at our

website.1 The core tool is unci-translate, which reads .u

files and compiles them into C++ code that makes use of
the CppUnit library, printed to standard output. The more
user-facing compilation tools are uncic, a shell script which
compiles Unci files directly to object files (which include
their own main but must be linked against the CppUnit li-
brary), and compile, which accepts both .cpp and .u files
and dispatches them appropriately, producing an executable
file. In our classes, the students are first introduced to the
compile command as a sort of “one stop shop” for compiling
their programs, but once they are introduced to make and
the idea of a build manager, uncic is more appropriate.

The download also includes drop-in configuration files to
set up syntax highlighting for Unci files in the Vim text
editor.

1http://cs.longwood.edu/~dblaheta/unci

7. REFERENCES
[1] K. Beck. Test-driven development: by example.

Addison-Wesley, Boston, 2003.

[2] CppUnit. Retrieved November 30, 2014 from
http://freedesktop.org/wiki/Software/cppunit/.

[3] CxxTest. Retrieved November 30, 2014 from
http://cxxtest.com.

[4] S. H. Edwards. Rethinking computer science
education from a test-first perspective. In
OOPSLA’03, Anaheim, 2003.

[5] S. Hammond and D. Umphress. Test driven
development: The state of the practice. In ACMSE’12,
Tuscaloosa, 2012.

[6] D. S. Janzen and H. Saiedian. Test-driven learning:
intrinsic integration of testing into the CS/SE
curriculum. In SIGCSE’06, Houston, 2006.

[7] D. S. Janzen and H. Saiedian. Test-driven learning in
early programming courses. In SIGCSE’08, Portland,
2008.

[8] JUnit. Retrieved November 30, 2014 from
http://junit.org.

[9] libunittest. Retrieved November 30, 2014 from
http://libunittest.sourceforge.net.

[10] V. K. Proulx. Test-driven design for introductory OO
programming. In SIGCSE’09, Chattanooga, 2009.

[11] V. K. Proulx. Introductory computing: The design
discipline. In I. Kalaš and R. Mittermeir, editors,
Informatics in Schools. Contributing to 21st Century
Education, volume 7013 of Lecture Notes in Computer
Science, pages 177–188. Springer Berlin Heidelberg,
2011.

[12] Unit++. Retrieved November 30, 2014 from
http://unitpp.sourceforge.net/.

[13] UnitTest++. Retrieved November 30, 2014 from
http://unittest-cpp.sourceforge.net.

[14] xUnit++. Retrieved November 30, 2014 from
https://bitbucket.org/moswald/xunit.

