CMSC280 Python Blaheta

Project 3: Frogger
Due: 11 November 2019

For your third project, you will implement (a version of) the 1980s arcade
game Frogger.

Basics of the game

We talked about this a bit in class, but the basic goal of the game is for the
player to navigate frogs from the bottom of the screen to one of the “home”
locations on the top. Along the way, the frog must cross a road, where it can
step only on the road itself and must avoid the moving objects (vehicles),
and the river, where it can step only on the moving objects (floating things)
and must avoid the water itself.

For our version of the game, you don’t need to perfectly match the original,
and I'm especially not concerned whether the graphics are identical. For
instance, logs could just be solid brown rectangles, and the frog could be a
green square. There should, however, be multiple rows of road, with at least
two kinds of vehicle and vehicles travelling in both directions; and multiple
rows of river, with at least two kinds of floating thing and things floating in
both directions.

The player wins the game when they successfully fill the five home locations
with frogs (after each one is filled, another frog shows up at the bottom of
the screen). The player loses when their frog dies three times. A frog dies
when it: is hit by a vehicle; falls in the water; is on a floating thing that
carries it off the screen; or jumps into the top row in a spot other than an
open home location.

Interface

Running your program should open a window with the game in it; at a
minimum, it should have a Pause button (clicking once pauses the game,
and clicking again unpauses it), a Start button, and a Quit button.! While
the game is running, the four arrow keys should control the frog.

!Pause and Start may actually be the same physical button (pause/unpause is only
needed while the game is running, and start when it isn’t), but this is not required.



CMSC280 Project 3: Frogger 11 November 2019

Design homework

For your initial pass at this, by Wednesday you should come to class with
some plans for how you’ll design this. It should be on paper (so we can talk
about it) and should include at least:

e All classes you will eventually implement, and the data they control
e Identify the GUI widgets you will be using for window control

e Ideas for how the various non-gui-widget classes will interact with each
other (is-a relationships? has-a? what kinds of behaviours?)

Checkpoint

For the checkpoint, due next Wednesday at 4pm, you should at a minimum
pop up a window with the two buttons and an open area where the game
will go, and draw a “frog” on that area (again, a green square would be
sufficient for that), and have the frog move back and forth in at least one
dimension in response to arrow keys.

Final version

The final version should be a playable Frogger(-like) game meeting the re-
quirements laid out above. Your first floating-thing type should undoubt-
edly be a log, but it’s up to you whether your second is turtles or crocodiles
(which each introduce a new, different way to kill the frog).

Rubric and timeline

Credit is on the following scale. Underneath the main score for each rubric
line is the total number of points if you also get the checkpoint done on time
(15 points) and submit appropriate documentation to tell me how/what to
run (20 points), and where that number of points falls on my grading scale.
In the right-hand column are some strong recommendations on where you
should plan to be if you want to finish the project on time.



CMSC280 Project 3: Frogger

11 November 2019

Most of the rubric items past the 15-point mark are independent of each
other, and can be implemented in some other order—this is just the recom-
mended order. If you get stuck on one, try a different one.

Score

0
(35/F)

10
(45/D)

15
(50/D+)

20
(55/C-)

25
(60/C)

30
(65/C+)

35
(70/B-)

40
(75/B)

45
(80/B+)

Description

Doesnt compile, or compiles but im-
mediately crashes when its run.

Compiles, runs, does no more than
specified for the checkpoint.

Frog moves in all four directions, and
at least one moving thing is onscreen,
and moving.

Game doesn’t start until Start but-
ton is pressed; Quit closes window and
quits

Moving things in both directions, that
continually move offscreen and repop-
ulate on the other side of the screen
Death from being hit by wvehicle or
jumping in the river

Frog can ride on top of floating things,
and dies from being carried offscreen

Home locations: one frog enters home,
new frog starts at bottom of screen

Win after five in home and lose af-
ter three deaths; win/loss halts game
with appropriate display (and Start
restarts new game)

Pacing comments

Recommend finish by Mon
28th; must finish by Wed 30th

Recommend try by Mon 28th

Recommend finish by Wed
30th

Recommend try by Wed 30th

Recommend try by Fri 1st

Recommend finish by Wed 6th



CMSC280 Project 3: Frogger

50
(85/A-)

95
(90/A)

60
(95/A)

65
(100/A+)

At least two types of floating thing
(log plus either turtle or croc); non-log
thing is visually distinct and animated
(turtles submerge, crocs open/close
their mouths)

Death from turtle (submerging) or
croc (landing on mouth)

Pause/unpause

Implement an additional Frogger ele-
ment, e.g. crocodiles in home, snakes,
fly; check with me to be sure your idea
will work and be acceptable.

Handing in

11 November 2019

For both the checkpoint and the final version (due 11 Nov at 4pm), hand it
in as proj3 using the handin script.



