
CMSC262 DS/Alg Applied Blaheta

Project 3: A*
Due: 30 October 2023

In this project you’re going to write a route finder. The program you write
should be able to read in map files, and using the A* algorithm with different
heuristics to shape the search, display the shortest path between the start and
finish squares (or report that there is no path).

Objectives

In the course of this project, the successful student will:

� implement a standard best-first pathfinding algorithm,

� write a custom hash function and use a hashtable to keep track of explored
and seen items,

� use a map/dictionary to maintain information to reconstruct the path upon
completion, and

� write a custom comparator and use a priority queue to manage the agenda
of items to explore.

Expected input and output

The program you write will look for one or two command line arguments. The
first is required, and specifies the file from which to read the board. The second
is optional, but if present, specifies what kind of search heuristic to use (once
you get to the part where that’s relevant); at least the strings “manhattan” and
“euclidean” should be accepted, but you MAY accept others if they’re useful
to you.

The input files will be in this general format:

8 5

........

..#*.::.

::#:....

..#.####

..#.o...

CMSC262 Project 3: A* 30 October 2023

Specifically, each file will contain a rectangular grid of arbitrary size, preceded
by a line with two positive integers representing the width and height of the grid
(respectively). At each cell of the grid, you can have one of five possible things:
the start (’o’), the finish (‘*’), an impassable wall (‘#’), a plain old open space
(‘.’), or a difficult-to-cross space (‘:’) that costs twice as much as an open space
to get through.

You can assume that every correct grid will have exactly one start and exactly
one finish. Extra lines in the file MUST be ignored (and thus are a convenient
place to write comments about that particular grid).

The output of the program should end with a display of the grid followed by
an information/status line. This final output grid should be just like the input
grid except:

� If a path exists from start to finish, the shortest such path is marked with
at-signs (‘@’), and

� whether or not a path exists, all of the locations that have been fully ex-
plored (and aren’t marked with at-signs) are marked with plus-signs (‘+’)
and all the locations that have been put on the agenda but not been ex-
plored are marked with hyphens (‘-’).

If there are multiple equally-short paths, any of them is fine; if a path is found, the
start node may be marked with either an o or an @, whichever’s more convenient
for you; similarly, the finish can be marked with either * or @.

The information line at the end should say either:

� “No path.”, or

� “Path found with cost n.”, replacing n with the cost of the shortest
path. (The cost should count total distance-cost covered, so a maze with
immediately adjacent start and finish would have a path of cost 1, a maze
of the form “o.*” has a path of cost 2, and so on. Each spot in the maze
that is difficult costs two, so a maze “o:*” has a path with a total cost
of 3.)

During the running of the program, you can display the grid and current status
as many times as you like; for these intermediate states the status line can be
something other than the two lines given above. (This can be very useful for
debugging and for illustrating your internal process!)

2

CMSC262 Project 3: A* 30 October 2023

Prep work

For this project, I’m not giving you any code to start from. Your initial prep work
involves getting the outer shell of the program running: getting the command
line argument(s), reading the grid, leaving a stub to process the grid and look
for paths, and printing the grid and final status.

In the initial prep work, the “look for paths” part will be minimal: it’s only
required to find paths with cost 1, i.e. those where the start and finish are literally
adjacent to each other. In cases where they’re further apart, it’s acceptable (in
the prep checkpoint) to report no path. In cases where there is actually no path,
the program should report no path.

Note that your program should not crash or give strange output if the start or
finish are directly adjacent to the edge of the grid, as in the example above!

This work is due next Monday (16 Oct) at 8pm. You’ll have a chance to ask
questions about it in class on Monday to clear up any last-minute issues, but you
really don’t want to wait until then to start it. When you’re ready to hand it in,
use the handin script with the assignment name proj3.

Design work

Once you’ve got the shell of the program running (or perhaps while you are
working on that, but the design work depends on course content we won’t fully
cover until next week), you can start thinking about the algorithm and data
structure design. I want to focus in particular on four aspects to plan for:

1. Write pseudocode for a function should explore before(a,b) that takes
two coordinate pairs and answers the question, “should we explore location
a before location b?”. This will make use of the equation f(X) = g(X) +
h(X) that we’ll continue discussing in class next week, but your pseudocode
will need to be more specific than that. How do you keep track of g? What
about h?

2. Work out the detailed numbers on paper for a particular example. Specif-
ically, draw out a sample grid that isn’t one of the ones we did in class,
where the shortest path requires at least one detour around a wall (that
is, the shortest path is longer than the Manhattan distance from start to
finish); and label every square that will ever be in the agenda with that
square’s f , g, and h values.

3

CMSC262 Project 3: A* 30 October 2023

3. Write out some test cases. Draw grids that aren’t ones we’ve done in class,
which collectively enumerate meaningfully different test cases. Remember
that test cases require us to say both what the input to a system is, and
what we expect the result to be. You should certainly have more than two
test cases, but you’ll have to think carefully about how many are needed
here to effectively test the different things you need to test. For each test
case you write out in your notes, remember to annotate it with what’s
special about that case (i.e. why you’ve included it).

4. Think about the data structures. In the objectives for this project, I men-
tioned three standard data structures—how will they be used? For each
of the three, indicate where in the algorithm you’ll add values to the data
structure and where you’ll access or remove from the data structure.

Write your design work on paper (or do it on your laptop, but paper’s probably
easier for this) and bring it to class; this work is due at the start of class on
Wednesday the 18th. If you’re really stuck on something, do your best, make a
note of it, and move on; we’ll be discussing this extensively in class.

Final version

A full-credit final version will be a complete, non-buggy, working implementation
of the A* algorithm TOGETHER WITH convincing proof that it is correct. The
program should be able to find the correct path on any input, and be able to
apply admissible heuristics based on both Euclidean and Manhattan distances
(chosen from the command line at runtime); and when the main heuristic results
in a tie in deciding which locations to explore next, the algorithm should break
the tie in an appropriate way. The “proof” will take the form of a clean and
complete set of test cases, including both input and expected results

Note that I am not able to spend a ton of time with your program (and in fact
may not read it at all, and definitely won’t do your debugging for you), so your
documentation will need to tell me anything I need to know to run and test your
program. There need to be clear instructions on how to run it in general as well
as how to run each/all of the tests and quickly verify that they ran correctly
(and which rubric items each one corresponds to). Having complete and correct
documentation is an easy 25 points, but if your documentation omits important
info or tells me the wrong thing, you’ll get less than full credit there.

After prep work (15 points), design work (10 points), and documentation (25
points), there remain 100 points in the rubric, which will be awarded according

4

CMSC262 Project 3: A* 30 October 2023

to the table below. Under each score, I show (for your convenience) the total
cumulative points if you get that item plus all the previous points, and the letter
grade this corresponds to. It is arranged roughly in the order I suggest you
attempt them, with the earlier ones being easier or enlightening with respect to
the later ones, but you can in general get points for the later ones (if they work)
without getting the earlier ones.

NOTE: if your code doesn’t compile, or immediately crashes when it’s run, you
will get zero of these points. Don’t let this happen to you!

5

CMSC262 Project 3: A* 30 October 2023

Score Description

10
(60/D−)

Runs on all valid inputs without crashing, and output matches re-
quirements for prep work (at least). Don’t forget to test non-square
grids.

5
(65/D−)

Can store, query, and iterate a set of “explored” and/or “seen” loca-
tions (either printing them out as coordinate pairs or by successfully
completing the “shows explored” rubric item).

5
(70/D)

Successfully explores more than just the adjacent locations without
ever falling off edges (crashing or bad access) or walking through
walls.

10
(80/D+)

Shows “explored” and “seen” locations in displayed final grid.
(NOTE: You can do this before anything listed further down—and
you should. Getting a visual on what your algorithm is doing is im-
mensely helpful.) (ALSO NOTE: displaying intermediate not-final
grids, with “explored” and “seen” locations marked, is a super-useful
debugging technique.)

5
(85/C−)

Explores substantially outward from start, repeatedly finding and
exploring additional adjacent nodes as managed by an agenda.

5
(90/C)

Reports that no path exists, without crashing, for all valid inputs
that have no path.

5
(95/C)

Reports that a path exists, without crashing, for all valid inputs that
actually have a path.

10
(105/B−)

Reports length/cost of path when one is found (whether or not this
was the lowest-cost path), accounting for “difficult” squares as cost-
ing 2.

10
(115/B)

Reconstructs a path that was found (whether or not this was the
lowest-cost path), showing it either as sequence of coordinate pairs
or by successfully completing the next rubric item.

5
(120/B+)

Shows the path that was found in the displayed final grid (whether
or not lowest-cost).

10
(130/A−)

Found path is always a valid lowest-cost path, for all inputs (not just
shortest-hop).

10
(140/A)

Exploration is shaped by a shortest-first heuristic based on the
(correctly-computed) Manhattan distance.

5
(145/A+)

User can choose on the command line between Manhattan and Eu-
clidean distance measures, and Euclidean heuristic is correct.

5
(150/A+)

When Manhattan-based heuristic yields a tie between two locations,
the algorithm uses an effective tiebreaker to search more efficiently.

6

Don’t forget that there is an implicit “and prove it” after all the rubric items.
This is especially salient for the always-shortest-path line, and for the shaped-by-
Manhattan line—choose some test cases that illustrate that you have done these
things, because if the only way to know it’s correct is by reading the code, you
won’t get the points.

Tips

You’re welcome to write this project in any language that runs on the lab systems.
(And if you want a language that’s not there, but could be installed, let me know
and I can make that happen.)

The prep work might seem familiar to you. Feel free to refer to work you did in
other classes to get that running. If it’s not familiar to you and you don’t know
how to do something, ask! That stuff is not what this project is really about,
and I don’t want you losing a lot of time on it.

In the early phases of implementation, use a stack or queue to hold your agenda,
before you get the priority queue stuff working.

You almost certainly don’t want to modify the internally-stored grid object after
you’ve read it in. Instead, use other data structures to store information, and if
you print out the grid, use that extra information to choose what to print.

If you’re not sure what Manhattan distance and Euclidean distance are, look
them up or ask. The Euclidean distance formula is probably the one you’d think
of if you know a “distance formula”, but Manhattan distance you might not have
seen before.

Handing in

For both the prep work and the final version, hand it in as proj3 using the
handin script. It is due at 8pm on the due date.

