CMSC262 DS/Alg Applied Blaheta

Project 2: Markov Babbler
Due: 27 September 2023

In this project you’ll write a text generator that is analogous to the core
piece of ChatGPT (and other generative Al systems): a Markov babbler.

The exact details of such generators will be covered in class over the next
few days, but the basic idea is that you have to answer the question, “based
on what came before, what is the most likely next word that should be
generated?”—and then emit that word. To do this, your program will need
to train itself on an established body of data—known as a corpus'—that
contains a lot of words and learn some statistics about the sorts of words
that appear in sequence with each other. (Relative to ChatGPT: this is
purely a language model, and not a particularly sophisticated one, so it’s
not going to be writing essays with meaningful content. But technically
speaking, it will be a generative Al system!)

Objectives

In the course of this project, the successful student will:

e implement a Markov model based on empirically-observed data,

e manage multiple open files to read data, distributed throughout several
directories in the filesystem,

e use maps/dictionaries to maintain frequency information of words in
different contexts, and

e apply standard techniques for probabilistic computation in the pres-
ence of very small numbers and absent data.

The data sets

I have access to the North American News Corpus (NANC) (Graff 1995)
and have uploaded a slightly processed version of it to /home/shared/nlp.
There are also some other files in that directory that you may or may

Plural corpora, which is pronounced COR-prr-ruh, because Latin.

v20230918-1245

CMSC262 Project 2: Markov Babbler 27 September 2023

not find useful. For purposes of this project you will be working with the
/home/shared/nlp/nanc-txt/ directory.? Each file generally represents (a
selection of) the articles from a particular news publication for one day.
Each article ends with a separator “===== .

Inside the directory is a file named files with a full listing of the files in
the various subdirectories. It’s relative to the directory itself, and with the
name of the directory and basic string concatenation you should be able to
put together filename that you can open with an ifstream or a Scanner
or whatever. (Even if you do know how to list directories at runtime, you
should still use the file index—it makes it a little easier to build and control
your test cases. If you are thinking about reaching for a DIR* and dirent,
you are barking up the completely wrong tree.)

I/0 spec

Just so we're on the same page (and I can automate some things) I'm requir-
ing you to specify the running parameters as command line parameters,® in
the following order:

programname what degree words dir index

where:

what is one of “dump”, “gen”, “eval”, or a decimal number like 0.4
degree is 0, 1, or 2

words is a maximum number of words to produce, such as 50

dir is a directory with training data files in it

index is a file with filenames relative to that directory

Even in early phases like the prep work, where some of those options are
irrelevant, you can ignore the command line option but all of them should
still be in the same positions on the line (and if a user doesn’t provide all of
them you can exit with an error message or do some other graceful thing).

The program will then read one line (or, later, more) from standard input,
and print its primary results to standard output. If you also have debugging

2You might also have fun playing around with the gutenberg files to make your babbler
speak in the style of Jane Austen, William Shakespeare, etc, but that’s not required; and
it doesn’t currently have the same files-and-index layout as the NANC directory.

3If you’re not sure how, look it up or see me. In C++ this involves using argc and
argv; in Java, the args array; and in other languages there are other useful incantations.

CMSC262 Project 2: Markov Babbler 27 September 2023

statements or user prompting, print that to standard error (cerr or the
equivalent).

Prep work

Unlike the last project, I'm not giving you any code to start from. Your
initial work involves getting the outer shell of the program running: get-
ting the directory name and index file from the command line, reading the
filenames it lists, and looping through to open and process each of the files.

To demonstrate that you’ve done this, your checkpoint program will read
and store the first whitespace-separated “word” in each referenced file, then
after the user presses Enter (i.e. your program reads a line from standard
input), print (to standard output) those words.

(Suggestion: make a local version of files that has a much smaller number
of filenames in it, like two or three. No need to work with all 6,486 files in
the corpus right off the bat!)

Thus if you made a index that had just the first six lines of files and ran
your prep work with that file, it would wait for the user to hit Enter and
then print

Anyone
WASHINGTON
WASHINGTON
WASHINGTON
LOS
RIVERSIDE,

(a lot of these articles start with a location!)

This work is due next Wednesday at 8pm. You’ll have a chance to ask
questions about it in class on Wednesday to clear up any last-minute issues,
but you really don’t want to wait until then to start it. When you’re ready
to hand it in, use the handin script as described at the end of this document.

CMSC262 Project 2: Markov Babbler 27 September 2023

A little more about the task

A Markov babbler emits text at random based on a probability distribution
learned from a corpus of text. Output from high-order Markov babblers can
appear quite uncanny, as if they almost mean something.

Any generative model is fundamentally based on the idea that you have a
probability model

p(next thing|previous stuff, other context)

For a text-based model in particular, we can refine that: the probability of
a particular word, say word #?7, is based on what came before:

p(wr = “the”|other words in the sentence, other context)

The core idea in a Markov model is the Markov assumption, that the only
relevant context for deciding what word someone says next is (some number
of) the most recent previous words; not the words before that, and not the
position in the sentence. For instance, in a first-order Markov model, the
probability is based on the one preceding word:

p(wi = “the”|wi,1)

This assumption makes it quite easy to build a generative model, although
it does sometimes give rise to some implausible or even ungrammatical sen-
tences, e.g.

The boy rapidly walk to her own a car.

Each small section of that line is a reasonably probable combination, but
the long-distance dependencies make it problematic. Fortunately, that’s a
problem with the model, and one you won’t need to “fix” in your program.
(In fact, the weirdness of the output is a large part of what gives Markov
babblers their charm!)

Design work

Once you've got the shell of the program running (or perhaps while you are
working on that, but the design work depends on course content we won’t
cover until next week), you can start thinking about the algorithm and data
structure design.

CMSC262 Project 2: Markov Babbler 27 September 2023

1. Devise an extremely short and simple data set that can serve to fuel
test cases. It should have just a small handful of files, each with just a
few words; their collective contents should be able to test the different
aspects of the empirical data collection system (in particular, some
words and word combinations should be repeated, and some not).

2. What built-in library data structures will you use to store the fre-
quency information you’ll need to compute the probabilities? Express
the types of these data structures in the programming language you
intend to use (and verify that its library includes those types!). Give
descriptive names to them so you’ll remember what they’re for; and
write out what the contents of those data structures would be given
the data example you wrote out in the previous item.

3. The end goal will be to evaluate probabilities and generate text based
on probabilities. Write pseudocode for how you will take a probability
distribution (i.e. likelihoods for each possible “next word”) and use it
to choose what word to generate next.

4. How will you handle it when the prompt contains words that don’t
exist?

5. The full NANC corpus has about a billion words of text; even dealing
with a substantially smaller portion of it will mean handling a lot of
data. What are the likely speed bottlenecks in the project? How can
you use data structures to manage them appropriately?

Final version

A full-credit final version will be a complete, non-buggy, working implemen-
tation of a Markov model that can train on a lot of data and either generate
or evaluate text based on that model, TOGETHER WITH convincing proof
that it is correct. The program should be able to read from the provided
training corpus and then behave according to the command-line parameters.

The data from the corpus is currently stored as regular running text; your
program should tokenise it as follows. In addition to shifting all letters
to lowercase, it should pull punctuation that starts or ends a “word” into
its own separate token (while leaving mid-word punctuation like hyphens
and apostrophes alone), and while multicharacter punctuation can mostly

CMSC262 Project 2: Markov Babbler 27 September 2023

remain together, it should pull any of these six characters—, ;:.?!—into
their own token, and a punctuation group that contains sentence-ending
punctuation (.?!) should be followed by the special token STOP indicating
a (probable) sentence boundary. So the input

“‘No; I think,’’ said Mr. Addle-Ross, ‘‘it isn’t!’’
should tokenise into

‘“ no ; i think , ’’ said mr . STOP addle-ross , ‘¢ it
isn’t ! ’’ STOP

The presence of the STOP is just a quick-and-dirty best-guess way to identify
ends of sentences; it’s sometimes incorrect (as above) but that’s outside
the scope of the project. When generating, a generated STOP shouldn’t be
printed but instead indicates the end of the utterance (and time to await
further user input).

The full data from all files in the index file should be read and stored; assume
an implied STOP precedes the contents of each file.

The user input is tokenised using the exact same rules as for the training.

The command-line argument indicating what mode the program is running
in is interpreted as follows:

dump tells it to print its trained data—essentially, debugging output, and
you probably don’t want to use this option when trained on the full
data set.

gen tells it to generate directly from the language model; for each new word,
it will consider all possible next words and choose one with likelihood
corresponding to the probability assigned by the model.

eval tells it to take the user’s input as a sequence of words and reports the
probability the model would assign to that sentence. These numbers
will be very small and should probably be reported in some version of
scientific notation (with large negative exponents)

0.4 or some other number tells it to generate from the language model using
that number as the “temperature”—lower numbers are more likely to
just generate the single most likely word, higher numbers are more
“creative”.

CMSC262 Project 2: Markov Babbler 27 September 2023

Whether generating or evaluating, the program should not terminate until
the user input does; each line of user input should be taken as a “prompt”
(when generating) or as a sentence to evaluate (when evaluating). An empty
line can still be considered a prompt, with no words in it, and should still
generate a response. (If interacting at the command line, Ctrl-D indicates
that user input is done.)

The parameter dictating the degree of the Markov model is either 0, 1,
or 2: this indicates how many previous words will be taken into account by
the model. (These are also known as “unigram”, “bigram”, and “trigram”
models respectively.)

When a user prompt is less than two tokens long, or includes words that are
not known to the model (or perhaps in contexts not known to the model),
it should still behave gracefully. Similarly, when evaluating sentences, it
should not crash or print zero when presented with previously unseen words
and word combinations.

Handing in

Hand it in as proj2 using the handin script. The prep work is due 8pm on
the 13th, and the final handin is due 8pm on the 27th.

Reference

D. Graff, North American News Text Corpus LDC95T21. Web Download.
Philadelphia: Linguistic Data Consortium, 1995.

CMSC262 Project 2: Markov Babbler 27 September 2023

Rubric

RUBRIC

General (50)
15 Prep work
10 Design
10 Documentation
15 Followup questions
File and text processing (27)
10 Opens and records at least one token from each file in given
directory that is listed in given index (i.e. the prep work)
Segments all tokens in every file (at least on whitespace)
Converts words to all lowercase with no start/end punctuation
Retains punctuation as separate tokens

. with ,.;:!7 further separated out
Counting and probability (35)
10 Counts unigram frequency of each token
Counts bigrams and their probs (Order-1 Markov model)
Uses prompt when generating output
Counts implied STOP token before files and after sentence-
ending punctuation, and uses it when generating to stop out-
put
5 Counts trigrams and their probs (Order-2 Markov model)
5 Uses appropriate fallback if prompt’s words are omitted or

unknown, when generating and evaluating

Generation and evaluation (30)
5 Generates text based on provided files with any randomness
5 Generates text directly from probabilities in language model
10 Evaluates sentence in input and prints its probability
10 Generates text using language model and temperature
Program flexibility (8)
2 Behaves to dump/gen/eval/temperature according to CL param
2 Varies order of MM according to CL param
2 Varies number of words generated according to CL param
2 Responds to multiple prompts (either gen or eval) until user ends program

5
5
5
2

o Ot

