CMSC262 DS/Alg Applied Blaheta

Project 1

Balanced binary
Due: 6 September 2023

See the document “General Project Notes” for notes about how
all projects will work in this course

You saw basic binary search trees in 162, and may remember that their
weakness is that in the worst case they behave like linked lists, with many
operations requiring O(n) time. The solution to this is to require that
every operation maintain balance in the tree, and if carefully done you can
guarantee add, search, and remove operations in O(lgn) time even in the
worst case. One data structure with such guarantees is the red-black tree,
which we’ll be covering in class over the next few days.

In this project, you’ll complete the implementation of a balanced binary
search tree.

Objectives

In the course of this project, the successful student will:

read complex code written by someone else (me),

read and write unit tests,

perform a case analysis, i.e. exhaustively enumerate the logically-possible
cases in a system, and

manipulate link-based data structures using pointers/references.

Prep work

Your starting point is a partial implementation that I have written. Start
by creating a working directory for this project and copying my files into it;
I've put them in /home/shared/262/rbtree/ . There are implementations
in C++, Java, and Python, and you may choose any of them to work with.



CMSC262 Project 1 6 September 2023

The prep work mostly involves reading the existing code and becoming fa-
miliar with it. To give you some starting points on working with the code,
I want you to perform the following tasks:

0. Read the readme! There’s important instructions there on how to
compile and run the code.

1. Fix the three compiler errors in the RBTree definition.

2. Fill in the removeLeafRight test case in the unit tests for RBTree
to actually test that the code correctly removes leaves that are the
right child of their parent node; compile it and run the tests to make
sure it works. (Note that there are a few other cases that fail—
removeRotateThreeRight, removeRotateCasell, and removeMystery.
Don’t worry about those yet.)

3. Compile the speed test, run it, and put its output into a file named
speed.txt.

4. At the bottom of the readme file, add lines that show exactly what the
TreeDump algorithm would output if it were given the following tree:!

You can either generate it by hand (after looking at the examples and
seeing how TreeDump works) or write a small program to generate it.

This work is due Wednesday at 8pm. You’ll have a chance to ask questions
about it in class on Wednesday to clear up any last-minute issues, but if you
haven’t started it you won’t have time to finish. When you’re ready to hand
it in, use the handin script as described at the end of this document.

You shouldn’t have to edit either the TreeDump algorithms or their test cases,
but you're encouraged to look at them—especially the test cases, which will
help you understand what TreeDump is doing.

1To make the red nodes more distinct and easier to see, I generally draw both the
nodes and their inbound edges in red, and I draw the inbound edges as a double line.
The double line is visible even when the red isn’t (and is suggestive of what the ASCII
diagrams will look like...).



CMSC262 Project 1 6 September 2023

Design work

Now that you’ve gotten the general layout, it’s time to dive in to the algo-
rithmic work. This will focus in particular on three parts of the program:

1. Verifying BST and red-black conditions. In isValidRBTree and in
validateAndCountBlack, there is code to verify correctness of a red-
black tree. Describe the algorithm. What is it checking for? How does
it work?

2. Adding values. The main tree-modifying work here is concentrated in
splitFour and maybeRotate. Draw a “before” and “after” diagram
for a scenario where splitFour would be called, and what that tree
should look like after the call to splitFour. Then, noting that there
are four numbered cases inside maybeRotate, draw “before” and “af-
ter” diagrams for each distinct case. Use concrete, actual values in
your diagrams (i.e. don’t just draw the nodes). Note that in one of
the cases my code is buggy and in another it is absent; your “after”
drawings will reflect what should happen in those cases, based on your
understanding of 234 and red-black trees, not what the code currently
does.

3. Removing values. The important tree manipulations when removing
values from the tree are managed in guaranteeRedLeaf, which works
to ensure that by the time we get down to the leaf node that will be
removed, that leaf node is a red one (while preserving the red-black
conditions along the way). This code distinguishes twelve different
cases, although some of those cases require no work to be done and all
the actual work is handed off to helper functions. (Seven of the cases
are not numbered; the last five are roman-numeraled I-V.) Again,
draw diagrams to illustrate each case. Where no change is made, you
can just say that, but for the cases where a tree manipulation occurs,
draw an “after” diagram to illustrate it. You don’t need to draw the
entire red-black tree, just the portion relevant to the algorithm, but
as before, make sure you use concrete values and indicate what value
the algorithm is seeking to (eventually) delete. Cases IV and V at the
end are meant to be the mirror image of cases II and III respectively.

Write your design work on paper (or do it on your laptop, but paper’s
probably easier for this) and bring it to class; this work is due at the start



CMSC262 Project 1 6 September 2023

of class on Wednesday the 30th. If you're really stuck on something, do
your best, make a note of it, and move on; we’ll be discussing this extensively
in class. In fact, discussing this is the main topic of the day.

Final version

A full-credit final version will be a complete, non-buggy, working imple-
mentation of a red-black tree TOGETHER WITH convincing proof that
it is correct. The form that proof takes will be a complete, rounded-out
set of test cases along with empirical speed tests comparing the red-black
implementation with the naive BST implementation.

Note that I am not able to spend a ton of time with your program (and
in fact may not read it at all, and definitely won’t do your debugging for
you), so your documentation will need to tell me anything I need to know
to run and test your program. I'll also be running your tests against buggy
code I've written, and your code against a complete set of test cases that
I’ve written—so you shouldn’t go changing the public interface of anything.
Having complete and correct documentation is an easy 25 points, but if your
documentation omits important info or tells me the wrong thing, you’ll get
less than full credit there.

After prep work (15 points), design work (10 points), documentation (10 points),
and followup (15 points), there remain 100 points in the rubric, which will
be awarded according to the table on the next page. Under each score, I
show (for your convenience) the total cumulative points if you get that item
plus all the previous points, and the letter grade this corresponds to. It is
arranged roughly in the order I suggest you attempt them, with the earlier
ones being easier or enlightening with respect to the later ones, but you can

in general get points for the later ones (if they work) without getting the
earlier ones.

BUT: if your code doesn’t compile, or compiles but immediately crashes
when it’s run, you will get zero of these points. Don’t let this happen to
you!

Make good use of the case analysis you did in your design work to help
you work through the rest of the implementation work—both in writing
test cases and in understanding just what the implementation needs to be
doing.



CMSC262 Project 1 6 September 2023

Score

10
(60/D-)

15
(75/D+)

5
(80/D+)
10
(90/C)
5
(95/C)
5
(100/C+)
5
(105/B-)
10
(115/B)
10
(125/B+)
10
(135/A)

5
(140/A)

(145/A)

5
(150/A+)

Description

Get all the prep work done, whether or not you got it working by
the original deadline. Include both the speed test for the naive BST
and the one for the red-black implementation.

Add test cases for the other three cases in maybeRotate (currently
only addRotateCase2 is tested). 5 each.

Fix the bug in the implementation of addition case 3.

Do the implementation of addition case 4.

Fix the bug in rotateThreeNodeRight.

Write the removeRotateCaseIll test case.

Write the removeRotateCaseIV and removeRotateCaseV test cases.

Add conditions to guaranteeRedLeaf to correctly identify cases IV
and V (which are the mirror images of cases II and III).

Implement deletion case II.
Implement deletion cases IV and V.

In the add method of RBTree, there is an if statement involving the
parent. It is algorithmically important, although its omission doesn’t
currently break any test cases. Figure out why it’s there, and write
an appropriately-named test case that would break if it were omitted
or commented out.

In the remove method of RBTree, there is an if statement to specially
handle the case where the root and both its children are all effectively
2-nodes (i.e. none of them have red children). Using only public
methods (add and remove), construct a test case that confirms that
this code works correctly.

The removeMystery test case builds a scenario that, in the current
implementation, fails. Debug the problem and fix it.

Your final work is due, via the handin script (see below), by Wednesday the
6th at 8pm.



CMSC262 Project 1 6 September 2023

Handing in

There is a script called handin installed on all the lab machines that you’ll
use to hand in your code (once for the prep work, and then again for the
final handin). This course is cmsc262, and the assignment is proj1 so you'll
type something like

handin cmsc262 projl bbst/

if the directory with your work in it happened to be named bbst. Read the
output of the handin script—it will tell you just which files it handed in, or
give you a hopefully-helpful error message to help you fix the problem.

If you work on your own machine, that’s fine, but when you copy the files
into the lab systems, make sure it compiles and runs and works correctly
before handing in. If a configuration difference between your machine and
the lab means that it compiles on yours but not in the lab... then you have a
program that doesn’t compile or run, and you’ve lost a lot of points. Don’t
let this happen to you!

You can run the handin script as many times as you like; I only look at
the latest-handed-in version. So, if you hand in and then realise you now
understand a bug you created (and the deadline hasn’t passed yet), fix it
and resubmit for a higher score!



