
CMSC242 Systems programming Blaheta

Project 2
Design notes and rubric

Below is a breakdown of the parts you need to work on; dotted numbers in
parens refer to the section of the RFC where a topic is explained in more
detail.

Incoming requests

Every incoming request (5) will start with a request line, then have header
lines, and end in a blank line. The request line (5.1) has three parts: a
method, an address, and a protocol version, separated by linear whitespace.
For instance, one possible request line would be

GET /index.html HTTP/1.1

The only methods you need to support are GET and HEAD (9.3, 9.4) (oth-
erwise you can reject with a 501) (5.1.1), and you may reject any request
that is not according to the current version of the protocol (HTTP/1.1) with
a 505 (10.5.6).

The requested address may be given either as an absolute path (which is only
‘absolute’ relative to the root of the webserver, not the whole filesystem) or
as a complete URL (5.1.2), but in either case you need to decode any quoted
bytes: a quoted byte is a percent sign followed by two hex digits (5.1.2).
(One common one is %20, which represents a space (0x20, or 32, in ASCII).)
Furthermore, you must disallow the use of “..” to go any higher than the
root of the webserver, in order to prevent privacy attacks (15.2). The only
upper limit to the length of a URI is what resources you’re serving, so your
request processor has to be able to handle arbitrarily long URIs OR you
have to have some justification on why you have a max length (and reject
the request with a 414, don’t crash) (3.2.1).

The header lines all start with the label of the header, followed by a colon,
some linear whitespace (2.2), and the value of that header. You can ignore
almost all request headers; the only ones you must somehow process are
Connection (14.10), Expect (14.20), and several headers that start with “If-
” (14.24 ff), but your response might well be an “I don’t handle that” error
message, typically a 501 Not Implemented (10.5.2). You can ignore the



CMSC242 Project 2

Host header (5.2) but if it is missing entirely you must respond with a 400
(19.6.1.1).

The next request, assuming there is one, will normally come immediately
after the blank line from the previous one.

Every line, including the blank line at the end of the headers, is terminated
by both a CR (carriage return, ASCII 13) and an LF (linefeed, ASCII 10)
(2.2); this is distinct from usual UNIX practice, where newlines are indicated
only by an LF. In C, the LF we are used to is represented with ’\n’ as usual;
to represent a CR you can use ’\r’ instead. NB: if you get messed up and
end up printing a CR to the terminal without a subsequent LF, this often
manifests as the cursor going to the start of the current line and overwriting
what’s already there. This can make fprintf-based debugging a surreal
experience if you don’t know to expect it.

Outgoing responses

Every outgoing response will start with a status line (6.1), then have header
lines (6.2) that end in a blank line; if the response has a message body
(e.g. a web page being served) this will follow the blank line that ends the
headers. The message body, if present, is not followed by an extra blank
line, but immediately by the next response, which corresponds to the order
the requests were received (8.1.2.2).

The status line contains the protocol version, then a space, then a three-
digit status code, then a space, then a human-readable ‘reason phrase’ of a
few words that correspond to the status code (10). The two primary status
codes for you will be 200 OK and 404 Not Found, but you’ll also have to
deal with 100 Continue, 400 Bad Request, and 501 Not Implemented; there
are one or two others that you might be required to send depending on other
programming choices you make (e.g. 414, 505).

The response headers must include Date (14.18 and 3.3.1), must include
“Connection: close” if this connection is not persisting (14.10), and must
include an appropriate Content-Length in bytes (14.13) if the connection is
persisting (but can, should, and might as well include a Content-Length in
any case). You should also include a Server header to identify this product
(3.8) as your server; use the format

Server: CMSC242-yourlogin-1.0

2



CMSC242 Project 2

replacing “yourlogin” as appropriate and a version number that reflects
your own versioning.

As in the request headers, every line of the response headers must be termi-
nated with the two-character newline sequence CR+LF.

After the blank line comes the message body. This is a straightforward
bytestream, and does not have to have CR+LF newlines (3.7.1)—it just
dumps whatever was in a file onto the TCP stream. Remember that even
most error codes have associated message bodies; the only times there are no
message bodies are in response to HEAD requests and on responses whose
status code is 204, 304, or anything starting with 1xx.

A couple of exploration techniques

Something to remember is that there are real HTTP clients (“web browsers”)
and real HTTP servers (“web sites”) out there, and you have tools to interact
with them directly and see how they react to various stimuli.

For seeing the responses a real web server gives, use telnet. If you type

telnet www.cs.longwood.edu 80

it gives you a fairly unfiltered TCP stream to the HTTP port of our web-
server; if you speak HTTP to it, e.g.

GET /index.html HTTP/1.1

Host: www.cs.longwood.edu

(don’t forget the blank line), it will spew a response at you, headers and all.
To terminate a telnet connection, press >] and then type quit.

For seeing what kinds of requests a web browser makes, try running your
prep work and pointing a browser at it! As indicated earlier, if you compile
your prep work as tcpserv, you could run

./tcpserv 6543

on (say) kernighan, then point any browser in the lab at

3



http://kernighan.cs.longwood.edu:6543/foo.html

you’ll see just what that browser is sending in its request. You can even
manually type a response. In this case, a simple >D will end the communi-
cation.

RUBRIC

General (30)
10 Prep work
10 Design work
10 Documentation
Simplest server (17)
10 Starts server on spec’ed port, accepts connections repeatedly

(until server is cancelled with >C or terminated by signal), and
reads from each until connection is terminated or requested
by client to be closed (i.e. the prep work)

5 Sends data to client
2 Response includes header: status line, [fields,] blank line
Response format and headers (14)
2 Status line is valid
2 Response includes Server header field with appropriate value
5 Response includes correct Date header field
5 Response includes correct Content-Length header field
Request processing, filenames and files (23)
5 Sends file spec’ed in request to client
2 Detects and responds to nonexistent/unavailable file
2 File location computed relative to web root directory (command line arg)
2 Understands file location as absolute path
5 Understands file location as URI
2 ...with decoding of quoted bytes in URI
5 Permits .. in path/URI but prevents it getting higher than

root of webserver
Request processing, everything else (16)
2 Detects and responds to bad method in request
2 Detects and responds to bad http version in request
2 Distinguishes GET from HEAD, responds appropriately
2 Endlines and blank lines are produced and processed correctly
2 Handles missing Host field
2 Handles Connection: close

2 Responds to un-handled header lines appropriately
1 Closes file descriptors when done with them (i.e. don’t leak resources)
1 Has at least the prep work done and avoids overflowing any

buffers (note that particularly bad/frequent/large overflows
may jeopardise other points as well)


