CMSC242 Systems programming Blaheta

Project 2
Due: 31 March 2021

In this project, you'll implement a daemon that communicates over TCP /TP
and speaks HT'TP, the hypertext transport protocol. You’re only writing
the server end here—the client end of the communication is just any old
copy of Firefox or Chrome or some other web browser.

Objectives

In the course of this project, the successful student will:

e write a networked program using the TCP/IP network libraries;

e interact with the network and filesystem while defending against buffer
overflow and access to non-permitted files; and

e read RFCs and implement their specifications.

Spec

Your server should take two command line arguments: a port number and
a directory, which will be the root of the web filesystem.

Implement all the portions of RFC 2616 that are REQUIRED of an HTTP

server, plus persistence of connection. RFC 2616 can be found at

http://datatracker.ietf.org/doc/rfc2616/

Prep work

Your initial prep work is to wrangle existing code into the form we’ll need
for our project; much of this is already written, in rough form, in the shared
directory.

Your prep work program should:

e accept at least one command line argument, which will represent the
port number it should run on (e.g. 8000 or 8080 or 12345), and fail
nicely if it does not get any arguments



CMSC242 Project 2 31 March 2021

e start a TCP server listening on that port

e check all return values for error codes and gracefully error out of the
program if any of the network stuff fails

e when a connection is made or terminated, print info to that effect (and
where the connection is coming from)

e print everything transmitted over that connection, until the connection
is closed

e keep awaiting connections after the first one closes (i.e. don’t quit after
the first client disconnects).

If your program is working, and you run it on port 12345, you should be
able to test it by (on the same machine) typing

telnet localhost 12345
or (if it’s on, say, knuth), going to any other machine in the lab and running
telnet knuth 12345
or
telnet knuth.cs.longwood.edu 12345
or even, foreshadowing the rest of the project,
links http://knuth:12345/arbitrary/stuff/here/

Hand in the prep work (as proj2) when you've got that working, no later
than 4pm on Monday the 15th. Keep a copy of it around, as this barebones
server will be useful later on to see what an actual browser sends when it’s
requesting things.



CMSC242 Project 2 31 March 2021

Design work

RFC 2616 is, as RFCs go, not outrageously long, but there’s a lot there. The
good news is, a lot of it is about cache and proxy behaviour, and clients;
and more importantly, a lot of the features it mentions for servers are either
optional or recommended, but not required; these are indicated by the all-
caps keywords MAY and SHOULD, respectively, and except for persistent
connections you can ignore those too.

For the design work, you will run through the document—mnot a deep dive,
not yet anyway—to identify the things you need to worry about. Write
down any feature that the RFC says you actually have to implement (plus
persistent connections, which I'm requiring even though the RFC makes
them optional), along with the section number in the RFC that describes
its requirements. Have that list with you in class on Wednesday, the 17th.

The first pass

I strongly recommend you sprint towards the earliest, simplest version of the
program that lets a browser request and receive something, however fragile
that might be. From there, it becomes a lot easier to debug and use iterative
development, where you start with a (more or less) working system, change
one thing, and see what happens.

To that end, here’s my thoughts on what a super-duper-bare-bones system
would look like:

e [t assumes all requests are GET,
e and all addresses are paths (not URLSs),
e that don’t have any hex-quoted bytes in them.

e [t further assumes that all headers are completely irrelevant, and just
throws them out.

e It only accepts one connection at a time.
e It assumes the specified file exists,

e and blindly sends it over the connection.

Your mileage may vary; feel free to chart your own course.



CMSC242 Project 2 31 March 2021

Final version

A full-credit final version will be a complete, non-buggy, working implemen-
tation of the RFC TOGETHER WITH convincing proof that it is correct.
The program should be able to run with arbitrary input without crashing
even if the user or client gives bad input (a graceful exit with an error
message is not a crash, nor is terminating the connection of an ill-behaved
client). The “proof” will take the form of a clean and complete set of test
cases, including both input/running instructions and expected results.

Note that I am not able to spend a ton of time with your program (and in
fact may not read it at all, and definitely won’t do your debugging for you),
so your documentation will need to tell me anything I need to know to run
and test your program. There need to be clear instructions on how to run
it in general as well as how to run each/all of the tests and quickly verify
that they ran correctly (and which rubric items each one corresponds to).
Having complete and correct documentation is an easy 10 points, but if your
documentation omits important info or tells me the wrong thing, you’ll get
less than full credit there.

After prep work (10 points), design work (10 points), and documentation
(10 points), there remain 70 points in the rubric, which will be awarded
according to [the table below.]

NOTE: if your code doesn’t compile, or immediately crashes when it’s run,
you will get zero of these points. Don’t let this happen to you!

[Rubric TBA]

Handing in

For both the prep work and the final version, hand it in as proj2 using the
handin script. The final version is due at 4pm on Wednesday, 31 March.



