
CMSC242 Systems programming Blaheta

Lab 3
5 February 2021

v20210201-1200

This week’s lab is about practicing three things in C: file I/O with FILE*,
fork/wait, and signal handling.

Black box spec

Your program will take as its command line argument a partial filename,
to which the program will append .in and .out to generate the actual file-
names used for the file-based I/O. (You may print an error message, but
should not crash, if the provided partial filename is longer than 20 charac-
ters.) On startup, it will print a message to the screen, then create one child
process to interact with the user and another to interact with the provided
files.

For both the user interaction and the file interaction, the behaviour should
be that it repeatedly reads in a single positive integer, pauses to think for
one second, and then prints the number twice as large as that. If the input
is zero, the interaction ends (a “normal” end). If the input is negative, the
interaction prints an error message and ends (an “error” end).

If both interactions end normally, the original process prints a message to
that effect and exits. If either interaction ends with an error while the other
is still running, the still-running interaction process immediately prints that
the other interaction had an error and then exits itself; and then the original
process prints a message that says which interaction ended with an error,
and exits. If the error happens after the other process is done, the original
process simply prints its error message and exits.

Example

Contents of test1.in:

3

42

7

0



CMSC242 Lab 3 5 February 2021

Interaction, including initial command prompt and both input and output:

shannon -> ./a.out test1

Welcome

8

16

1000

2000

17

34

2401

4802

0

Both interactions normal

Contents of test1.out after execution:

6

84

14

Example 2

Contents of errex2.in:

8

13

-5

2

0

Interaction, including initial command prompt and both input and output:

shannon -> ./a.out errex2

Welcome

123

246

2

Error in other interaction

File interaction ended with error

2



CMSC242 Lab 3 5 February 2021

(Note that the exact result/length of the interaction depends slightly on how
fast/slow the user types.) Contents of errex2.out after execution:

16

26

Error

Example 3

Contents of third.in:

1

2

3

4

5

0

Interaction, including initial command prompt and both input and output:

shannon -> ./a.out third

Welcome

25

50

-1123

Error

User interaction ended with error

Contents of third.out after execution:

2

4

Error in other interaction

(Note that the exact contents of the file depend slightly on how fast/slow
the user types.)

3



CMSC242 Lab 3 5 February 2021

Internal and other requirements

In case it’s not clear, the one-second pause is a purely artificial requirement
to make this basically testable (otherwise the file-based interaction would
go much too fast). This can be done with the sleep function.

The indication from a child process as to whether it is ending normally or
with an error should be through its exit condition: 0 for normal, 1 for an
error. The original process will check for this condition to decide how to
respond to it.

The signal from the parent process to the other child after one child errors
should be a SIGTERM which is handled appropriately.

The actual work of read-pause-print should be done by a function that takes
FILE* parameters, so that it can work with actual files or with standard
input and output.

Other design aspects are largely up to you, but you should use functions
appropriately and observe principles of good design.

As before, your handin should include a readme documenting how to com-
pile, run, and test your program. You may use a makefile; you should not
rely on compile. (If you wish to use unci, i.e. .u files, to test any functions
you write, you can use uncic directly to compile the .u files into .o files.
See me for details if you need help.)

Programs that do not compile will get few or zero points.

Use test cases to show me what works.

Duedate and handin

The lab is due Friday at 4pm.

Hand it in using the handin script:

handin cmsc242 lab3 dir_of_stuff/

4


