
CMSC242 Systems programming Blaheta

Lab 1
20 January 2021

v20210128-1545

This week’s lab is about practicing three things in C: I/O (and strings),
arrays, and functions.

Black box spec

Your program will read a sequence of words from the user, each at most ten
characters in length and all lowercase. After every five words, the program
will print the alphabetically-first word in that batch and the length of the
longest word in that batch (see format below).

When the entry is the special all-uppercase word “DONE”, the statistics for
the current partial batch (if any) are printed, and then the program ends.
Invalid words (too long or not all-lowercase) get an immediate response of
“error” and the program terminates.

Example

some

simple

testing

of

alphabetic

First: alphabetic

Longest: 10

various

short

words

DONE

First: short

Longest: 7

Internal and other requirements

All string manipulation should be protected from buffer overruns and mali-
cious input.



CMSC242 Lab 1 20 January 2021

Your words should be stored as a 2D array with appropriate bounds for the
task.

Validation should be done, at least in part, by calling a function you write.

Stats computation should be done by calling a function you write. The
function should not do any of the printing itself. (Think carefully about
what its parameters need to be.)

You may write functions other than the two just mentioned, if you find them
useful to your design.

The headers of all functions you write other than main should be provided
in a separate corresponding .h file.

Your handin should include a readme documenting how to compile and run
the program; and test cases and instructions for how to use them. You may
use a makefile to control the build but should still include a readme with
instructions. You should not rely on the compile command, but use gcc

directly.

Note that a program that does not compile will get few or zero points (even
if there’s a lot of code that seems close), while a program that compiles and
does only a few things will be eligible for much partial credit. Use test cases
to show me what works.

Duedate and handin

The lab is due Wednesday at 4pm.

Hand it in using the handin script:

handin cmsc242 lab1 dir_of_stuff/

Instead of dir of stuff/ you can use . (period) to refer to the current
directory or * to refer to all files in the current directory, or you can name
the files explicitly (but it’s easier to just hand in the whole directory, right?).

Note that later handins effectively overwrite earlier ones. If you change
something in one file, you can re-handin but make sure you hand in all the
files, not just the changed one.

2



CMSC242 Lab 1 20 January 2021

Rubric

RUBRIC

README and other files (3):
1 compile instructions
1 testing files or instructions
1 func headers in .h
Main file: setup and declarations (6):
1 #incl stdio and/or other appropriate
1 int main()
1 decl int and char[]
1 decl 2d array
1 ...bounds are for word list length and word length
1 ...word length bound is sufficient
Main file: I/O (5):
1 scanf one word into valid buffer
1 ... limited to buffer length
1 printf anything
1 ... a string variable
1 ... a number variable
Main file: loop algorithm (71/2)
1 loop w/ bound or reset at 5 lines
1 check if word is DONE
1 break if DONE
1 ... but still print stats
1/2 ... but don’t print stats if DONE is 6th line (no stats to print)
1 Don’t include DONE in stats
1 read 5 and print stats after 5
1 keep going after 5 lines, w/o infinite
Main file: error and exit (41/2):
1 error and exit immediately under some cond
1 ... if includes invalid letters
1 ... if too long
1 ... ... compare actual string length to constant (could be in fn)
1/2 ... ... with error at correct length
Validation function (4):
1 header works for validating only lowercase (and/or length)
1 loop all: for loop, [i] inside, stop at n or \0

1 correctly id lowercase
1 ret false if non-lower found, true if fallthru OR equiv
stats function: headers (3):
1 param is 2D array
1 param is number of vals in array to check
1 all stats in one fn with two out parameters or equiv
stats function: algorithm (7):
1 loop all: for loop, [i] inside, stop at <n or <5
1 bounds check: start at 0, stop at n, where n≤5
1 init both accumulators before loop
1 if longer than longest, update
1 if earlier than earliest, update
1 ... with valid alpha comparison (not just first letter)
1 update out params or return both (print not sufficient)


