
Stop go
Threads

thread

Thread 1

int treasure = 9;

int payment = 0;

void fetch(){

while(treasure > 0){

int amt = min(treasure,13);

treasure -= amt;

payment += amt;

}

}

Thread 2

int treasure = 9;

int payment = 0;

void fetch(){

while(treasure > 0){

int amt = min(treasure,13);

treasure -= amt;

payment += amt;

}

}
 amt == 9

treasure == 0
amt == 9

treasure == -9

Time

Race Conditions

Critical Section

Like two trains which need to share a single track 
A race to the critical section. 

Unpredictable results if both are in the critical section at the same time
Changing shared variables creates a critical section

thread
#include <iostream>

#include <thread>

#include <mutex>  
using namespace std;

int treasure = 1000;

int payment = 0;

mutex mtx;

void fetch(){

while(treasure > 0){

mtx.lock();

int amt = min(treasure,13);

treasure -= amt;

payment += amt;

mtx.unlock()

}

}

int main(){

thread diver(fetch);

diver.join();

cout << payment << endl;

return 0;

}

A mutex provides mutual exclusion

like a stop light

lock — before the critical section

unlock — after the critical section

Must be shared between threads

mutex

• Use when modifying shared variables

• Limit the use or threads will be waiting doing nothing

• Deadlock is circular waiting that can't be resolved (I'm
waiting on your lock and you are waiting on my lock)

