CMSC210 Web design Blaheta

Homework 1
Due: 24 Jan 2024

Problem 1.1

Create a webpage in your public_html directory (or a subdirectory) that is
at least slightly coherent, not the same as the tutorial content, and makes
use of:

e header tag(s), and

e one or more of p, div, and span

The HTML file should be well-formed with proper headers; and it should
link to a CSS file that visibly styles either the header or the text tags,
or both. Finally there should be a file called README.txt with contents
resembling the following:

To access this file from the web, use the following URL:
http://something.blah/whatever/whatever

with the URL fixed to be the correct one for your page.

Problem 1.2

In that same webpage or a different one, put

e an image file,
e two lists, one marked with circles and the other with squares, and

e a table with bold, centred column headers, at least one column of text
(which is left-aligned), and at least one column of numbers (which is
right-aligned).

For this assignment all closable tags should be closed even if the browser dis-
plays it ok without that. Note that the styling aspects of this (circle/square

CMSC210 Homework 1 24 Jan 2024

markers, left/right alignment) should be done through separate CSS, not
inlined, so you will need to use class and/or id attributes in the HTML so
that you can coordinate that.

If these files are separate from the one for the first problem, indicate that
also in the readme file and give the URL for this page as well.

Problem 1.3

There is a directory of files in the shared directory with a bunch of content
(one of the readings I use when I'm teaching 121), and for this problem
you’ll style the files. First copy them over:

cd

cd public_html

mkdir hwkil

cd hwkl

cp /home/shared/210/hwkl/* .

(don’t forget the dot on the last line, and the spaces are important!)

Then, edit the index.html file only to connect it to a CSS file that you’ll
write—no other edits to the HTML—and style the page to match the visual
appearance shown in screenshots later in this handout (more or less). Once
you have that basically working, start a second CSS file to match the other
set of screenshots. You can leave the not-in-current-use CSS filename in a
comment in the HTML file or just indicate it in the readme.

The readme file should let me know where to find the Problem 1.3 content as
a URL, and also how to edit so that I can see the other CSS file (it doesn’t
matter which one is ”current” when you hand in).

Handing in:

From your public_html directory, type the following;:
handin cmsc210 hwkl .

If you have other content in that directory and/or all the content for this as-
signment in a subdirectory, just make sure alllllll the files for this homework
are in among what’s handed in.

CMSC210

Problem 1.3 Version 1:

Representing images
Don Blaheta, Longwood University

One of the standard types of data that a modern
computer needs to be able to process is the image. In
the early years of digital computers, control and
interaction with computers was done through
numeric switches and later text terminals, and
memory and computation were too expensive to be
able to do much with images. Indeed, processing
images at all was something of a niche area of
research. Now, of course, the computer in your
phone or even your wristwatch can be expected to
have a graphical interface and handle images and
video automatically.

Homework 1

Why are we working on this?
‘When it comes to representing
information, our goal is to be able to
represent any kind of information as a
collection of numbers. Just numbers.
That may seem particularly challenging
in the case of images, but here we will
work through a few aspects of that
representational task to see how it
works.

Skills in this section:

Subdivide images into grids of pixels;
Represent colors as RGB triples

Concepts:
As with text and other kinds of data, we will see what ~Data representation
representational work needs to be done in order to
encode an image as a sequence of numbers, so that computation can be performed.

On this page, we'll see two important representational steps: first, to take something that the
human eye could physically view as a single, complex, continuous image, and break it up into small
discrete pieces that can each be separately encoded; and second, to take the myriad colors that
human eyes can see and divide them into separate components that can each be represented by a
single number.

Subdividing images

You're probably reading this on a screen right now. Take a moment and look away from the
screen, at physical things near you. There are probably a variety of straight lines in your field of
vision, oriented at different angles. There are probably also a number of things that are smoothly
round, whether circular or oval or some more complex shape. On all of those things there are a
mix of color and shading, some shiny spots, some shadows, many with a smooth or "gradient”
transition as well as many with a sharper change between colors. In order to have any chance of
representing all of that visual variety, we need to break it down into smaller representable chunks.

One standard way to do so is to overlay the image to be represented with a rectangular grid. Each
cell in the grid is called a pixel, and within this kind of system, each pixel is displayed as having a
single, uniform color. Unless the underlying image is itself laid out on a rectangular grid that is

norfoctly alimed with the nivel rid_that meanc the renracentatinn ic imnarfact_and each nivel

3. Measure the resolution of your laptop or smartphone in ppi.
4. The standard-definition television standard prevalent in North America through the 20th
century had a resolution of 702x480. How many megapixels were there in each frame?
5. One of the current HDTV (high-definition television) standards has a resolution of 1920x1080.
How many megapixels does it have in each frame?
6. Describe in English the colors represented by the following RGB triples:
a. (255, 255, 0)
b. (50, 50, 50)
c. (0, 0,128)
d. (100, 0, 150)
e. (0, 128, 50)
f. (255, 150, 150)
g. (150, 100, 50)
7. Find RGB triples that match or approximate the following color swatches:

a.
N |
-l
d.
N |
f
g.
Credits and licensing

The Rotunda logo is property of Longwood University. Other images and all text are by Don
Blaheta, licensed under a Creative Commons BY-SA 3.0 license.

Version 2017-Jan-13 23:00

24 Jan 2024

Qragran I part a oI FIgUre d SIOUIU 100K [MILAT: 11 POILL (U,U) ~
is right in the middle, where the axes cross; other points can be
labelled, with positive or negative coordinate values that need not
be nice round integers.

In most computer graphics contexts, though, we find it convenient
to avoid fractions and negative numbers, so we put (0,0) in a
corner and label each pixel separately. Furthermore, if we use the
upper left corner for (0,0), with Y values increasing as we go down
the image, it means that coordinates increase as we scan from top
to bottom and left to right, just as if we were reading a page of
text. In part b of Figure 5, you can see the origin in the upper left,
and note that the other marked points have coordinates that are
positive whole numbers, and indicate the number of pixels from
the left or from the top of the image. It's possible to design
software that doesn't work this way, of course, but nearly every
image processing package you'll find that lets you refer to
individual pixels will count them in this way.

b: As used in computer graphics
Figure 5: Standard Cartesian
grids

Representing colors
In the last section, we showed how to break a larger image into smaller pieces, but our end goal is

still to reduce everything to numbers. In order to do that, we have to think about how to represent
colors, and in order to do that we need to learn a little bit about how color works.

CMSC210

Homework 1

Problem 1.3 Version 2:

Representing images
Don Blaheta, Longwood University

‘Why are we working on this?
When it comes to representing information, our goal is to be able to represent any kind
of information as a collection of numbers. Just numbers. That may seem particularly
challenging in the case of images, but here we will work through a few aspects of that
representational task to see how it works.

Skills in this section:

Subdivide images into grids of pixels; Represent colors as RGB triples

Concepts:

Data representation

One of the standard types of data that a modern computer needs to be able to process is the image.
In the early years of digital computers, control and interaction with computers was done through
numeric switches and later text terminals, and memory and computation were too expensive to be
able to do much with images. Indeed, processing images at all was something of a niche area of
research. Now, of course, the computer in your phone or even your wristwatch can be expected to
have a graphical interface and handle images and video automatically.

As with text and other kinds of data, we will see what representational work needs to be done in
order to encode an image as a sequence of numbers, so that computation can be performed.

On this page, we'll see two important representational steps: first, to take something that the
human eye could physically view as a single, complex, continuous image, and break it up into small
discrete pieces that can each be separately encoded; and second, to take the myriad colors that
human eyes can see and divide them into separate components that can each be represented by a
single number.

Subdividing images

You're probably reading this on a screen right now. Take a moment and look away from the
screen, at physical things near you. There are probably a variety of straight lines in your field of
vision, oriented at different angles. There are probably also a number of things that are smoothly
round, whether circular or oval or some more complex shape. On all of those things there are a
mix of color and shading, some shiny spots, some shadows, many with a smooth or "gradient"
transition as well as many with a sharper change between colors. In order to have any chance of
representing all of that visual variety, we need to break it down into smaller representable chunks.

3. Measure the resolution of your laptop or smartphone in ppi.

4. The standard-definition television standard prevalent in North America through the 20th
century had a resolution of 702x480. How many megapixels were there in each frame?

5. One of the current HDTV (high-definition television) standards has a resolution of 1920x1080.
How many megapixels does it have in each frame?

6. Describe in English the colors represented by the following RGB triples:
a. (255, 255, 0)
b. (50, 50, 50)
c. (0, 0, 128)
e. (0, 128, 50)
£ (255, 150, 150)
g. (150, 100, 50)

7. Find RGB triples that match or approximate the following color swatches:

.
N |

g.
Credits and licensing

The Rotunda logo is property of Longwood University. Other images and all text are by Don
Blaheta, licensed under a Creative Commons BY-SA 3.0 license.

Version 2017Jan-13 23:00

R

24 Jan 2024

7,19)
)

©,0)
(88,541

b: As used in computer graphies

Figure 5: Standard Cartesian grids

You've seen before, probably in a high school algebra class, the idea of using an X axis and a Y
axis, perpendicular to each other, which together define a coordinate system for labelling points.
The diagram in part a of Figure 5 should look familiar. The point (0,0) is right in the middle, where
the axes cross; other points can be labelled, with positive or negative coordinate values that need
not be nice round integers.

In most computer graphics contexts, though, we find it convenient to avoid fractions and negative
numbers, so we put (0,0) in a corner and label each pixel separately. Furthermore, if we use the
upper left corner for (0,0), with Y values increasing as we go down the image, it means that
coordinates increase as we scan from top to bottom and left to right, just as if we were reading a
page of text. In part b of Figure 5, you can see the origin in the upper left, and note that the other
marked points have coordinates that are positive whole numbers, and indicate the number of
pixels from the left or from the top of the image. It's possible to design software that doesn't work
this way, of course, but nearly every image processing package you'll find that lets you refer to
individual pixels will count them in this way.

Representing colors

In the last section, we showed how to break a larger image into smaller pieces, but our end goal is
still to reduce everything to numbers. In order to do that, we have to think about how to represent
colors, and in order to do that we need to learn a little bit about how color works.

