
CMSC208 Grammars, Languages, and Automata Blaheta

Homework 9
Due: 8 April 2025

v20240329-1530

Problem 9.1 — theoretical

The grammars we’ve seen for a simple arithmetic expression have been as
follows:

E → number

E → E + E

E → E ∗ E
E → (E)

and

E → M

E → E +M

M → N

M → M ∗N
N → number

N → (E)

Show by drawing concrete parse trees how they perform differently on the
expression

1 ∗ 2 + 3 ∗ 4 ∗ (5 + 6)

Explain why the second grammar is better (including what “better” would
mean in this context).

For the next two problems, consider the following tiny grammar:



CMSC208 Homework 9 8 April 2025

P → program S $

S → (+ L +)

→ iflt E E then S

→ iflt E E then S else S

→ print E

L → ϵ

→ S L

E → num

Note that S is suggestive of “statement”, L of “list”, and E of “expression”,
although in this language the only “expressions” are number literals.

Problem 9.2 — theoretical

The language P has two features of interest: a nestable branching construct,
and a recursive definition that includes the empty string (written as ϵ) as
one of its expansions. Give at least three strings in the language P , each
diagrammed with a valid parse tree (recommendation: turn the paper side-
ways, write the entire string horizontally at the bottom so the tree can have
the root at the top). The strings you choose should include:

� A simple one that has a single if-then-else where each branch has a
single print statement

� An illustration of the use of the L production to make a block of
multiple statements (but the overall string should still be an element
of P )

� An illustration of the nesting conditional structure that has an am-
biguous parse; show one of the parses and describe in words how the
other would be different

Problem 9.3 — practical

Using the code from class as a model, write a set of C♯ classes that can store
the information from any parsed program of P , and on the call of a par-

2



CMSC208 Homework 9 8 April 2025

ticular method will generate a valid C++ program to execute it. Suggested:
use classes named ProgramNode, StmtNode, BlockStmtNode, CondStmtNode,
and PrintStmtNode, and possibly others if you find them useful (but think
about the relationship between those node types).

The semantics of the language should be mostly straightforward: a state-
ment block between (+ and +) should execute all the statements in the
list; iflt is short for “if less than” and performs that comparison on the
two expressions (numbers) that are given to it; and print should send the
provided expression (number) to the console. You can assume num is an
integer.

As with the class example, your program should have at least something
in place to demonstrate that it works (though not necessarily a compre-
hensive test suite), but doesn’t actually have to do the work of parsing
the language—your examples can be entered manually with calls to new

CondStmtNode and so forth.

Hand in the files containing the C♯ code (and preferably also a readme) using
the handin script:

handin cmsc208 hwk9 myfile.cs otherfile.cs README.txt

If you want to put the parse trees in electronic form too I’ll accept them
that way, but I think they’ll be mostly easier to do on paper. (Please write
neatly!)

Collaboration policy: For Problems 9.1–9.2: group work! If you work
with other people on this homework, you can just hand in one copy and
put all your names on top. There will be a revision cycle for this. For
Problem 9.3: collaborative. You each have to hand in your own version
of the assignment, but you can talk to other people about the problems.
Mention in a comment or readme who you worked with. (Still no copying,
though.)

3


