
CMSC162 Intro to Algorithmic Design II Blaheta

Lab 12
8 April 2021

For today’s lab, you’ll glue together some of the code from several different
sources—a few recent labs, and the last few days of lecture—to make another
subclass of Set, this time implemented with a BST.

Assembling the parts you’ll need

You’ll need most of your files from Lab 9 (at the least Set.h and probably
your testing code). (I think everybody got at least this much of Lab 9, but
if not, you can copy my Set.h from the shared directory.)

If you got Lab 11 at least mostly working, you can get your BinaryNode.h

and related files from there—convert it to be a tree that holds anything by
moving all code to the .h file, replacing char with Thing, and preceding the
class with

template <typename Thing>

OR you may copy BinaryNode.h from the shared directory. (But if you
have a working BinaryNode, it’s really better to modify and use that.)

You’ll also want to grab your code for inPrint in Lab 11, and although
you’ll be heavily modifying it, get contains as well.

You may want to bring in your Card stuff from Lab 10, particularly if you got
the less-than operator working, but this is purely optional (for demonstrating
and testing the set).

You’ll also want to at look at your notes (and perhaps the board photos)
about binary search trees that we’ve been doing in class the last few days.

The task

As in Lab 9, you’ll implement a subclass of Set, this time called TSet. Its
implementation will use a binary search tree to store the elements, and like
VSet it will not even store duplicate values.



CMSC162 Lab 12 8 April 2021

Some of the code for this is already written, and just needs to be adapted to
the current task! There is no need here to rewrite something from scratch
BUT you should be sure that the source is indicated; comments like

// adapted from class FooBarBaz written in lecture

or @author lines in class comments, e.g.

/** Description of class

* @author Don Blaheta

* @author Your Name

* @version updated date here (e.g. 2 April 2021) */

are how we do citations in much of the programming world.

When you first get started on this lab, your remove method should have the
following body:

cerr << "Not implemented yet." << endl;

until you get everything else pieced together and compiling and tested.

You don’t need to worry about keeping the tree balanced; and you can
assume that any Thing that is used with your TSet has a working < operator
as well as ==. (This is true of all the relevant built-in classes, such as int,
char, and string, as well as many user-defined classes, such as our Card

class (if you got that far).) Though not required by the Set interface, your
TSet should have a working operator==, and a friend operator<< function
that prints out the contents by making a call to your inPrint function—
which will be used as a private method of the TSet class. You can assume
that any Thing will also have a well-defined << operator.

The first thing that is not already written for you in some form is remove,
which we roughed out a basic design for in class but still has some imple-
mentation and testing gaps. Enter the test cases we did devise and add
some to represent the ones we didn’t write yet; implement it piece-by-piece,
focusing on getting one TC to pass before working on the next. (Otherwise
you’re typing in dozens of lines all at once and sort of hoping there aren’t
any tricky bugs in it.)

Finally, adjust your code to test and implement size, isEmpty, and the ==

operator. They should work correctly in all cases and be relatively efficient,

2



CMSC162 Lab 12 8 April 2021

although for this lab == only has to guarantee O(n lg n) performance on
typical trees, not O(n). The == operator should be built to work with any
Set as the right-hand-side operand.

Hand in your work electronically as lab12, by lab time next Thursday. (It
would be due Wednesday but we have no classes Wednesday....)

RUBRIC

1 Present/engaged
1 Good readme
Gluing together existing code and design
1 TSet is a subclass of Set ♣
1 add and contains implemented from pseudocode
1/2 << prints contents of TSet with inorder traversal using templated inPrint
1/2 Fixtures with suitable examples
1 Test cases convincingly confirm that add, contains, << work (fail ok) ♣
Implementing remove

1 Test cases convincingly confirm that remove works (fail ok) ♣
1/2 remove correctly removes values in leaves on multi-element trees
1/2 remove correctly removes value from one-element tree
1/2 remove correctly removes values in nodes with exactly one child
1/2 remove correctly removes values in internal nodes with two children
Other methods
1/2 size and isEmpty are tested, correct, and O(1)
1/2 == is tested, correct, and O(n lg n) if both operands are TSet and balanced

♣ indicates point is only available if the code compiles, with at least a stub
for the relevant method(s).

3


