Syllabus tl;dr CMSC 162: Intro to algorithmic design II

Spring 2021

Meets: MWF 1:10, Rotunda 115 (or via Zoom); and Thu 12:30pm, via Zoom

Websites: https://canvas.longwood.edu/courses/5251553

http://cs.longwood.edu/courses/cmsc162

Professor: Don Blaheta, Rotunda 334, blahetadp@longwood.edu

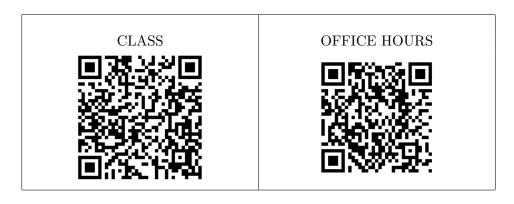
Office hours: Mondays 4–5pm; Tuesdays 11–noon;

Wednesdays 2:30–3:30pm; Thursdays 2–3pm

Textbook and resources

CS2 Software Design & Data Structures by the OpenDSA project.

https://opendsa-server.cs.vt.edu/ODSA/Books/CS2/html/


The other main resource is provided by us: you'll be given an account on the department Linux machines (if you don't already have one), and you'll do your programming work there.

Graded work

- Engagement 5%
- Labs and homework 45%
- Presentation 10%
- Exams 20%

Exam 1 is out Monday, 22 February Exam 2 is out Monday, 26 April

Zoom attendance quick links

Presentations and final project

In the last weeks of the term, each student will, with a partner or two, give a presentation about a data structure or algorithm as well as writing an implementation relevant to it. The presentation will be 12–15 minutes and needs to include:

- Accurate example diagrams
- Pseudocode and tracing using the example
- A demonstration of either correctness or efficiency

Both/all partners must participate in the presentation but may divide the time as they see fit. More details will come later in the term.

Grading scale

I tend to grade hard on individual assignments, but compensate for this in the final grades. The grading scale will be approximately as follows:

A-	[85, 90)	A	[90, 95)	A+	[95, 100]
B-	[70, 75)	В	[75, 80)	B+	[80, 85)
C-	[55, 60)	\mathbf{C}	[60, 65)	C+	[65, 70)
$\mathrm{D}-$	[40, 45)	D	[45, 50)	D+	[50, 55)

While there will be no "curve" in the statistical sense, I may slightly adjust the scale at the end of the term if it turns out some of the assignments were too difficult. Final grades of A+ are recorded as an A in the grading system. Final grades below the minimum for D- are recorded as an F.

Note that *individual* grades recorded in Canvas should be accurate (and you should let me know if there's a data entry error!), but *averages* as computed by Canvas sometimes are not, if the averaging is complex or (especially) if an individual student has a special case scenario. The reference gradebook is my own spreadsheet, and while I will try to make Canvas reflect it (including averages) as well as I can, Canvas can't always handle it.

Special note re mastery lab: You must eventually complete the first lab satisfactorily in order to get higher than a D+ for the course. See details in the syllabus and in the Lab 1 handout.

Calendar

Wk	M	W	R	\mathbf{F}
1	January	13 A	14	15 B
		Introductions Policies	Lab 1: Review and mastery	§1.1 What is a Data Structure? Design and specification
2	MLK Day no class	$egin{array}{l} {\bf 20} {\rm A} \\ \S\S 2.1 – 2.1.1.1 \\ {\rm Object-Oriented} \\ {\rm Design} \\ {\rm Classes} \ {\rm and} \ {\rm methods} \end{array}$	21* — Lab 2: Classes, I/O, 2D arrays	$egin{array}{c} {\bf 22} { m B} \\ \S 2.2 \\ { m .h \ files} \\ { m Templates} \\ { m UML} \end{array}$
3	25 A	27 B	28	29 A
	$\S\S1.2,3.1$ ADTs	$\S\S3.2-3.2.1$ Implementing an	Lab 3: Function	$\S\S3.2.2$ More
	Lists	ADT	design Unit testing	implementation append, remove
	February			
4	1 B	3 A	4	5 B
	TBA	_	_	$\S\S7.1-7.2$
	Pointers "Smart" pointers	Dynamic allocation	Lab 4: Pointers	Recursion Fibonacci Binary search
5	8 A	10 B	11	12 A
	TBA	§10.1		
	Linked nodes	Linked List	Lab 5: Linked node methods	Linked List implementation, ctd
6	15 B	17 A	18	19 B**
	$\S 7.7$	TBA	_	$\S 6.1$
	Tower of Hanoi Recursive algorithms	Recursive backtracking The call stack	Lab 6: Reading code make, gdb Backtracking	Other uses of stacks Array-based stack implementation
7	\$6.2 Stacks and recursion Linked Stacks Exam 1 TH out	$\left[\begin{array}{c} \text{Exam 1} \\ \text{no class} \end{array}\right]$	25 — Lab 7: Using STL stack Exam 1 due	26 B TBA Exceptions

^{* 21} January: Deadline to add/drop classes (5pm)

^{** 19} February: Deadline to elect pass/fail option (5pm)

		v	,	•
Wk	M February	W	R	F
8	March Break no class	3 A — Classic ADTs The "big picture"	4 — Lab 8: Empirical efficiency	5 B §§4.2, 4.5 Algorithmic efficiency Big-O notation
9	8 A §10.2 Comparing implementations Array List, Linked List revisited	\$2.1 Inheritance is-a / has-a Hierarchies	Lab 9: Interfaces and multiple implementations	12 A Ch. 8 Quadratic sorts
10	15 B TBA Faster sorts comparing alg's	17 A TBA Faster sorts, ctd	TBA Lab 10: Overloading operators	19 B §§9.1.1, 9.2 Queues Linked Queue
11	22 A §§11.1–11.3 Trees Traversals	$\begin{array}{c} {\bf 24B} \\ {\rm TBA} \\ {\rm Tree\ implementation} \end{array}$	25 §§16.1–16.2 Lab 11: Linked trees	26 A — Tree implementation, ctd
12	29 B $\S\S11.4-11.4.2$ Binary search trees	31 A* §11.4.3 BST remove	April April Break no class	April Break no class
13	5 B TBA Maps/Dictionaries	7 A — BST analysis, balance, rotation	8 — Lab 12: BST implementation	9 B TBA Heaps
14	12 A TBA Hash tables	[Research Day no class]	15 — Lab: DT/Alg implementation	16 B — Model presentation Presentation debrief
15	19 A	21 B	22 —	23 A
16	Presentation work day 26 B	Presentations	Lab: DT/Alg implementation	Presentations
ı	Presentations Exam 2 TH out			
	May			

Syllabus tl;dr

CMSC162

Spring 2021

 ${\bf Exam~2~due:~Wed~5th,~5:30pm}$ Reserved for (online) presentation overflow if needed: Wed 5th 3–5:30pm

^{* 31} March: Deadline to withdraw from a class (5pm)