
CMSC162 Intro to Algorithmic Design II Blaheta

Lab 9
Preview

21 March 2019

Today you’ll start development on a project that provides a (small) library
of classes to a potential user. Specifically, it will be a group of classes that
store elements without duplication—a set.

Sets

What is a set? Its fundamental properties are that it

• contains elements,

• does not count or distinguish duplicates, and

• does not guarantee anything about their order.

That means that it can’t, for instance, retrieve an element at a particular
index, because indices imply order and sets don’t (promise to) preserve
order. Think about it, and in your notebook, write down the key methods
that a Set class will have to have. There are three or four really important
ones, plus a few that would be more optional. Make sure to mark which
ones would be const.

Once you’re pretty confident about your list, write a file Set.h that encodes
this information in the form of valid C++ method headers. It will look
pretty similar to some of the header files we’ve written in class (such as
ArrayList.h), except that it won’t have instance variables (ie no private

section) and the methods won’t be defined. We would like to make our Sets
able to hold any type of element; recall that we can use templates for that.
To make that happen, you just need to precede the class header with

template <class Thing>

and then use Thing as the name of the type the Set would hold, whenever
you add a value or search for a value or anything like that. (Feel free to use



CMSC162 Lab 9 21 March 2019

a different name than Thing—in class we’ve used ItemType or just T. Up to
you!)

Because our Set class is meant to define an interface, we want to mark its
methods as “pure virtual”: the implications of this we’ll discuss in class, but
the mechanics simply involve marking it virtual and setting the body to
zero. That is, if you had written a method

int getSomeValue() const;

you would mark it pure virtual by writing

virtual int getSomeValue() const = 0;

Go ahead and do that (add virtual and = 0 to each of your method dec-
larations) in Set.h.

Then, write a simple test file called test VectorSet.u that, for now, just
#includes your Set.h file and has an empty test suite. Compile that file to
confirm that your header has no errors.

Test cases

Now that we have a public interface, we can start planning our test cases. In
your notebook (not yet in the .u file), describe a few useful examples (which
will eventually become the test fixture). Then, write some sequences of
method calls, using those examples, that collectively verify that a Set would
correctly contain its elements, and does not count or distinguish duplicates.

2


