
CMSC162 Intro to Algorithmic Design II Blaheta

Lab 11
1/2 November 2021

v20211101-1545

In this lab, you’ll write some code that builds, and then traverses, binary
trees. For simplicity, we’ll write trees that only hold characters.

Tree nodes

First, create a struct BinaryNode, capable of representing any of the nodes
in a binary tree. It will have three instance variables: a char, holding the
value that is stored at a particular node, and two pointers to BinaryNode

(one to the left child, if any, and one to the right child, if any).

By now you should be getting comfortable with writing your own structs
and classes, so I won’t recap those instructions here; look back at previous
labs to help you remember how.

Examples

In a notebook, draw out the following three trees:

• emptyTree, which is simply set to nullptr

• simple, which points to a node containing ’Q’ whose left child con-
tains ’X’ and right child contains ’Z’ (and no further descendants)

• tree5, pointing to a node that is the root of a small tree that contains
the five letters ’A’ through ’E’ and is relatively balanced (i.e. not just
a line)

Near each tree, write out the C++ expression you will use to actually con-
struct the corresponding tree. Start a unit test file whose fixture includes
at least those examples. Note that functions that work on a BinaryNode

pointer (that is, a shared ptr<BinaryNode> should, in general, work on
emptyTree, since it’s a perfectly valid example of a (empty) tree.



CMSC162 Lab 11 1/2 November 2021

Functions

In a separate file BinaryTreeFunctions.cpp, write three functions prePrint,
postPrint, and inPrint, each of which takes a shared ptr<const BinaryNode>

argument and an ostream& argument, and prints the given tree to the given
stream. The three functions should each recursively print the tree contents
(if any) to the stream, left-to-right, in the correct traversal order.

Write the functions’ prototypes in BinaryTreeFunctions.h, and include
that in your .u file. When you test the traversals, use an ostringstream

to check the output (as we did with Maze and Card).

Two other functions

Write and test the following recursive functions also:

• size counts the total number of nodes in the subtree rooted at a given
shared ptr<const BinaryNode> (including the node itself, if any).

• contains determines whether the subtree rooted at a given
shared ptr<const BinaryNode> includes a given character. (Note
that it does not rely on nodes being in any particular order!)

Handing in

Hand in your work electronically as lab11, by 4pm on Monday.

RUBRIC

1 Present in lab with preview stuff done
1 Readme with all required information
Class and examples
1 General struct definition, instance variables ♣
1 At least one BinaryNode correctly created ♣
1 Specified trees created
Function definitions and tests
1 All five required functions have correct headers and good test cases (fail ok) ♣
1 One recursive traversal is implemented correctly ♣
1 All three traversals are implemented correctly ♣
1 size ♣
1 contains ♣


