
CMSC162 Intro to Algorithmic Design II Blaheta

Lab 10
25/26 October 2021

This week we’ll take a brief break from the Set library and revisit a class we
saw way back in Lab 4 (and the exam): Card, representing playing cards.
At the time, we were more focused on learning how pointers work, but today
we’ll use the class to practice operator overloading and some related ideas.

To start, copy the files from /home/shared/162/lab10/ into your working
directory for this lab. Look at the files; they are the same as provided for
Lab 4 but I’m giving you a fresh copy (plus one new file). Start writing
a readme file and describe what’s in the directory according to our usual
readme format. Read each file and write down questions about anything
you’re not sure about.

Vim FOTD: windows

Go into your directory (which you’ve already copied the lab files into) and
type

vim -o Card.h Card.cpp

Instead of opening all the files sequentially (as would happen if you omitted
the -o, it opens them all at once! If you use :q (which, you’ll recall, closes
a file without writing it), it just closes one of the windows. (:wq also affects
only the current window.) To add an extra window, another colon-mode
command is handy:

:new test_Card.u

will open a new window showing test Card.u . You can also try

:e Makefile

Notice that :new opens a file in a new window, while :e opens a file in the
current window.)

And, of course, when we say “window” here, it is only with respect to the
single vim process. All of these “windows” are within a single terminal

CMSC162 Lab 10 25/26 October 2021

window. There are two main advantages to using vim windows instead of
separate terminal windows to edit multiple files: first, all the switching back
and forth can be easily done from the keyboard. And second, they share
buffers, so you can hit 10dd in one window, deleting ten lines, and p in
another, pasting precisely those ten lines with no funny whitespace or line
numbers or tab conversion or anything else.

Vim’s window management commands start with Ctrl-W (abbreviated >W):

>W h Left one window

>W j Down one window

>W k Up one window

>W l Right one window

>W w Cycle cursor through windows one-by-one

>W s Split current window into two windows (horizontally)

>W v Split current window vertically into two windows

>W r Rotate windows (actually changing their positions)

To quit all windows at once, use :qa. (If you’ve edited some of them, you
may need to use :wqa or :qa! .)

Defining ==

As I’ve mentioned occasionally in class, in C++ you can write method defi-
nitions that let you use builtin operators like == or < with classes that you
write. The key idea here is that the behaviour of any operator can be defined
for a particular argument type by a function or method named operator

followed by the symbol for the operator. If a method, the class it’s defined
in is the “left operand”, and the right operand is provided as an argument.
If a function, it should take two arguments. For instance, for a hypothetical
Fraction class, it could be defined with the function

/** produces the Fraction resulting from adding two given Fraction

operands */

Fraction operator+ (const Fraction& left, const Fraction& right);

Note that in this case the return type is Fraction, but other operators might
return bool or something else entirely; and in this case both operands are
const but that doesn’t always have to be the case.

Of particular note: overloading operators in this way is somewhat associated

2

CMSC162 Lab 10 25/26 October 2021

with a class BUT is done entirely outside the class definition.1 That means
that you’ll declare the function (its header, followed by a semicolon) in the
.h file after the close of the class definition, and you’ll define the function
(with its full body) in the .cpp file without using a :: scoping operator.
Other than the name it’s just a plain-old normal function.

Go into Card and add a function to overload == to test whether two given
Card objects are equal to each other. Conveniently (and not coincidentally),
there is already an isEqualTo method to actually do the work for you. For
your function, the name will be operator== , following the form shown
above. When the function is defined, the body can just call isEqualTo to
do the work.

Don’t forget to add a test case to test Card to confirm that this works; note
that unlike the name of the method (which will be operator==), the name
of the test block has to be an identifier, so you’ll start it with something like

test opEqEq

You don’t want to use the full word “operator==” in the test cases, either
(though technically it does work). Test it by actually using == in your check
expression!

So what?

We already had isEqualTo, so what benefit is there in overloading == ? The
convenience of writing something like

if (card1 == card2)

is nice, of course, but the big win is that a lot of library functions are
designed to use an overloaded == to do their work. Look inside the file
show library stuff.cpp now. Uncomment the first commented-out part
(now that you’ve implemented ==). Save the file, run make, and then run
./show library stuff to see what it does—it makes use of builtin library
functions to do its work, and they make use of the == operator to do their
work. In many ways, implementing certain operators lets you unlock a whole
section of the C++ library.

1There is also a way to define the overloaded operators inside the class, in some cases,
but for consistency I’m not presenting it here.

3

CMSC162 Lab 10 25/26 October 2021

You’ll notice that all the library functions I’ve used in there take as their
first two arguments cards.begin() and cards.end(). This makes use of
something called “iterators” that we haven’t really worked with yet—we’ll
see more of them later, but for now, this is a way to tell the library algorithms
to process the whole vector, from beginning to end.

Defining <<

The C++ streaming (input/output) operators provide a nifty way for writers
of classes to make their objects “read-able” and “write-able”—since << and
>> are just operators, you can overload them too! When you write something
like

cout << 5;

the thing on the left is an ostream, and the thing on the right is an int, so
C++ looks for and finds a definition for operator<< that takes an ostream&

and an int. Deep in the libraries, there is a function defined whose header
is

ostream& operator<< (ostream& out, int n)

to do this work. Since that also returns an ostream&, it means that when
you write

cout << 6 << 7;

it performs the first operation (cout << 6), which results in an updated
ostream that can serve as the left side of the next << operator.

In the past, we’ve made print methods that take an ostream& to do their
work; when we make an << operator, the body of that method will be
much like what we’ve written before; it’s really just the headers that will be
different.

So, similarly to the previous operator (but with different types for the pa-
rameters and return type): In Card.h, declare a function called operator<<

that takes an ostream& and a const Card& , and returns an ostream&.
Then, in Card.cpp, write the function. As with the various print methods

4

CMSC162 Lab 10 25/26 October 2021

we’ve seen, do not print anything directly to cout here—use the ostream

parameter instead.

To test this, you can write a test case that creates an ostringstream and
prints some cards to it, and then verifies that the resulting string is what
you expected:

ostringstream testout;

testout << queenHeart << " " << jackClub;

check (testout.str()) expect == "QH JC";

This is very similar to how the print method of Maze was tested in the code
I gave you for Lab 7.

So what?

The benefits of this one might be a little clearer—once you define a stream
operator for a class, you can put objects of that class into the stream just
as if they were built-in types. Once you’ve got it implemented, uncomment
the second part of the demo file. Now that we can conveniently print out
Card values, you can see the effects of a few other library functions that got
unlocked when you implemented == .

Side note: once == and << are both defined on a type, you can use values
of that type directly as expect targets in a .u file. Remember wanting to
write something like

check (Location{3,4}.east()) expect == Location{4,4};

in the maze project? If you were to overload == and << for the Location

class, that line would work exactly as you’d want. You can verify this
by uncommenting the first check/expect statement in swapSuitSimple, that
directly runs .swapSuit and checks that its result is == to another Card

object.

Defining = and the Rule of Three (or Five)

For a lot of classes, including Card, you do not need to explicitly overload
the = operator; if you don’t, the compiler will auto-define one that works well

5

CMSC162 Lab 10 25/26 October 2021

in many cases (a fact that we’ve relied on any time we assigned a Location,
Card, or Maze to another variable!).

What does it mean to overload =? As the assignment operator, it changes
the contents of this object to match those of a given other object—similar
to a constructor that takes a (const reference to) a given other object, known
as a “copy constructor”. You really only need to define either one when your
class has to manage extra resources (such as new pointers, or open files, or
similar)—and the Rule of Three says if you think you need to define either
one, you should be defining both of them plus a destructor (which takes care
of cleaning up the resources when the object goes away). A newer Rule of
Five suggests that you should additionally define a move constructor and a
move assignment operator when you’re doing all this.

The Card class doesn’t need any of that. But file this away for future
reference.

Other overloads

Overload < (less-than comparison). You should be sure to make aces high,
that is, an ace is not less than any other card (but all non-aces are less than
aces). You can ignore suit for this comparison. Once you’ve got it done,
you can uncomment the last part of the library demo file—you’ve unlocked
the builtin sort function!

Use the same basic technique you used on << to overload >> as well (this
time to read from an istream&). Remember to make use of the methods
already defined, to make your job easier!

Handin

Hand in by 4pm Monday, as lab10.

6

CMSC162 Lab 10 25/26 October 2021

Rubric (tentative)

RUBRIC

1 Present in lab and working
Defining ==

1 Header in class definition ♣
1 Body defined correctly
1 Tested in .u file (fail ok) ♣
Defining <<
1/2 Header correct ♣
1 Body defined correctly
1/2 Tested in .u file (fail ok) ♣
Other definitions
1/2 < header ♣
1 < well tested including ace logic (fail ok) ♣
1 < defined with correct ace logic
1 >> ♣
1/2 >> tested (fail ok) ♣

♣ indicates point is only available if the code compiles, with at least a stub
for the relevant method(s).

Extras

Go back and revise your Maze and Location classes to make use of == (for
Location) and the stream operators (for Maze and Location), and clean up
your test files.

7

