CMSC162 Intro to Algorithmic Design 11 Blaheta

Lab 9
18/19 October 2021

Today you’ll start development on a project that provides a (small) library
of classes to a potential user. Specifically, it will be a group of classes that
store elements without duplication—a set.

Sets

What is a set? Its fundamental properties are that it

e contains elements,
e does not count or distinguish duplicates, and

e does not guarantee anything about their order.

That means that it can’t, for instance, retrieve an element at a particular
index, because indices imply order and sets don’t (promise to) preserve
order. Think about it, and in your notebook, write down the key methods
that a Set class will have to have. There are three or four really important
ones, plus a few that would be more optional. Make sure to mark which
ones would be const.

Once you’re pretty confident about your list, write a file Set.h that encodes
this information in the form of valid C++ method headers. It will look a
lot like the generic header file from the book that covers all lists (List.h);
in particular, unlike an implementation (such as AList.h), it won’t have
instance variables (ie no private section) and the methods won’t be defined.
We would like to make our Sets able to hold any type of element; recall
that we can use templates for that. To make that happen, you just need to
precede the class header with

template <class Thing>

and then use Thing as the name of the type the Set would hold, whenever
you add a value or search for a value or anything like that. (Feel free to use
a different name than Thing—in class we’ve mostly used T. Up to you!)



CMSC162 Lab 9 18/19 October 2021

Because our Set class is meant to define an interface, we want to mark its
methods as “pure virtual”: the implications of this we’ll discuss in class, but
the mechanics simply involve marking it virtual and setting the body to
zero. That is, if you had written a method

int getSomeValue() const;
you would mark it pure virtual by writing
virtual int getSomeValue() const = O;

Go ahead and do that (add virtual and = 0 to each of your method dec-
larations) in Set.h.

Then, write a simple test file called test_VSet .u that, for now, just #includes
your Set.h file and has an empty test suite. Compile that file to confirm
that your header has no errors.

Test cases

Now that we have a public interface, we can start planning our test cases. In
your notebook (not yet in the .u file), describe a few useful examples (which
will eventually become the test fixture). Then, write some sequences of
method calls, using those examples, that collectively verify that a Set would
correctly contain its elements, and does not count or distinguish duplicates.

At this point, run the handin script (with assignment 1ab9) on your direc-
tory for this lab, or just on the Set.h and test_VSet.u files, so I can get a
sense of what your plan is, while you move on to the FOTD section. I'll try
to check in relatively soon and give you feedback on it.

Vim FOTD: movement keys

Vim responds to the arrow keys and keys like PageUp and PageDown, but
there are a number of additional keys that can be pressed in command mode
to move around the file. Open one of the files you have lying around and
try some of them out.



CMSC162 Lab 9 18/19 October 2021

Key(s) Movement
h Left one character

j Down one line P_ I I T I _4
k Up one line H *J K L
1 Right one character

A To beginning of current line

$ To end of current line

Ctrl-F Forward one page (screen)

Ctrl-B Back one page (screen)

To last line of file

To line # (e.g. 1G to go to top of file or 23G to go to line 23)
To beginning of next punctuation-delimited “word”
To beginning of next whitespace-delimited “word”
To end of this punctuation-delimited “word”

To end of this whitespace-delimited “word”

To beginning of this punctuation-delimited “word”
To beginning of this whitespace-delimited “word”
To next (batch of) blank line(s)

To previous (batch of) blank line(s)

To matching paren/bracket

To previous unmatched left paren

To start of current function

TR AvYwomoe =8 o
N

—/
=]

Some of these are more mnemonic than others, of course. The first four are
not mnemonic at all, but super-convenient once you’'ve got them in muscle
memory, because they're right in the home row, so your fingers don’t have
to go anywhere to type them.

So what, right? Well, all of the delete commands that you learned in earlier
labs were special cases of a rule: d plus a movement command deletes from
“here” to wherever that movement goes. So, d1G deletes to the top of
the file. And dJ deletes everything between this paren and the matching
one. Since the p command only pastes the most recently-deleted thing, it’s
very helpful to be able to delete everything you want to “cut” all at once.
Same goes for the y (“yank”, i.e. copy) commands. The re-indent command
(=) is another one that works with an arbitrary movement: =% reindents
everything between “here” and the matching paren or bracket, while =G
reindents everything from “here” to the end of the file, and so on.

There’s no need to memorise all the movement commands right now, of



CMSC162 Lab 9 18/19 October 2021

course. A couple might stick, but for the rest, even if you don’t remember
the command, you’ll remember it exists, and you can always come back and
refer to this sheet.

Starting an implementation

Eventually, we’ll write Set implementations that run efficiently and mimic
the standard implementations, but before we worry about efficiency we have
to aim for correctness. Our first implementation will be VSet, and will use
the vector built in to C++ to store the data.! Its main inefficiency will be
that when the user requests to add an element, it will have to check to see
whether it’s already in the set, and only add it if it’s not already there.

Edit a file VSet.h to start working on the class definition. The VSet will
declare itself to be a subclass of Set by using the following class header:

template <typename Thing>
class VSet : public Set<Thing>

(again, feel free to use a word other than Thing, and it doesn’t have to be
the same placeholder name that you used in the Set definition). Inside the
class, you'll start by making a private instance variable that is a vector to
hold the data; and then for every pure virtual method in the Set definition,
you’ll write a stub method in the VSet definition (for now). Note: because it
is a templated class, all the code for VSet will go in the .h file. Other than
the “: public Set<Thing>”, the .h file will be structurally quite similar
to the AList.h and LList.h files we’ve been working on in lecture.

Testing it

Now that you have the bare bones of an implementation, go ahead and type
the test cases you wrote out earlier into the file test_VSet.u you created
earlier.

Because the main constructor for any set (or any collection) should take no
parameters and construct an empty instance, your fixture will have to have
this overall structure:

'Note that a VSet object “has-a” vector, but “is-a” Set.



CMSC162 Lab 9 18/19 October 2021

fixture:
VSet<int> examplel = VSet<int>{};
// plus more like that, but all (initially) empty
// also probably with better names

setup
{

// code to add the contents to each of your fixture examples

}

There should certainly be multiple examples, and some of them could be
sets of string or whatever, and you should use names more descriptive than
“examplel”. Make sure to have a couple different sizes of sets, and with
different properties—e.g. same values added in different orders, or duplicate
values.

Once you have your test file typed in, compile it and run it to confirm that
everything compiles. If you run your test now, most if not all of the tests
will still be failing—they’re still just stubs!

Actually writing it

Now go back and start filling in the stub methods. At this point you can
compile and test fairly frequently. The more frequently you do so, the easier
it will be to find bugs that you inadvertently introduce.

Several of the methods will be quite short, and can simply call an existing
method of vector! Don’t write more than you have to.

Another implementation

Once you’ve finished VSet, write a different class called LazyVSet. From a
user perspective, the results it gives should be exactly the same (but may
take more or less time) as a VSet. The difference is that when the user
requests to add an element, it always justs adds it (using push_back) to the
internal vector, even if this creates duplicates—making this a cheap oper-
ation, which is why it’s “lazy”—but then it has to do a bit more work when
it removes something, and when it computes how many distinct elements
are in the set.



CMSC162 Lab 9 18/19 October 2021

Testing that one

The tests for LazyVSet should be identical to the ones for the other set,
right? Copy your existing test file to one called test_LazyVSet.u and re-
place all occurrences of VSet (which should only be at the top of the fixture,
not in the setup or in any of the test blocks) with LazyVSet, and compile
the test suite and run it. Debug your LazyVSet and keep testing it until it
passes as well. (Size/length is a bit tricky, and you can get full credit on the
lab without getting it working if it’s at least well-tested.)

Handing in
Hand your code in by 4pm Wednesday, as 1ab9 .

RUBRIC

1  Present and engaged in lab with preview stuff done

Set

1 Method headers

L pure virtual

Ly compiles &

VSet

1 Class definition as subclass &

1 Test suite tests correct behaviour (fail ok) &

1  Either add or contains is defined and correct

1  Add, contains, remove, size are correct &

LazyVSet

1 Class definition, subclass, add is correct ¢

1  Remove and size are effectively tested (fail ok) &

1  Remove is correctly defined
& indicates point is only available if the code compiles, with at least a stub
for the relevant method(s).

Extra

Produce a table of times and a group of graphs a la Lab 8/Hwk 3 to show
the efficiency differences between VSet and LazyVSet.



