
CMSC162 Intro to Algorithmic Design II Blaheta

Homework 1
Due: 17 September 2021

Problem 1.1

Assume that the Card class is defined as in Lab 4, and consider the following
not-very-useful code:

void func (Card a, Card& b, shared_ptr<Card> c)

{

cout << a.getSuit() << b.getSuit() << c->getSuit() << endl;

a = Card{9, Card::HEART};

b = Card{8, Card::SPADE};

c = make_shared<Card> (1, Card::HEART);

cout << a.getSuit() << b.getSuit() << c->getSuit() << endl;

}

int main()

{

Card x = Card{3, Card::CLUB};

shared_ptr<Card> y = make_shared<Card> (7, Card::DIAMOND);

func (x, x, y);

}

Its output is what you’d probably expect:

112

343

For this problem, though, draw out two diagrams of what’s in memory, and
where: one diagram for the state of memory at the time of the first cout

statement, and another to show the changes as of the second cout statement.

To be clear: there are five named variables in this code and all five should
appear in both the “before” and the “after” diagrams.



Problem 1.2

Consider a class RpgPc that has the task of representing players in a role-
playing game, each of which has a name and a series of stats:

class RpgPc

{

private:

string name;

unique_ptr<int[]> stats;

...

The following is proposed for one of its constructors. Some lines that aren’t
of current interest are omitted, as is the definition of average (which com-
putes the average of a six-element array of integers).

RpgPc(string n) : name(n)

{

unique_ptr<int[]> statsA = make_unique<int[]>(6);

unique_ptr<int[]> statsB = make_unique<int[]>(6);

/* ... randomly generate values in both arrays ... */

double avgA = average(statsA);

double avgB = average(statsB);

if (avgA > avgB)

stats = move(statsA);

else

stats = move(statsB);

}

a. Draw a diagram of memory at the end of running the constructor;
assume for purposes of the diagram that avgB was higher than avgA.

b. If this code hadn’t used managed pointers (unique ptr), but used
plain old pointers instead (int*, new), this would have introduced
a memory leak. Explain why, and how to fix it (other than using
managed pointers).

Collaboration policy: group work! If you work with other people on this
homework, hand in one copy and put all your names on top. There will be
a revision cycle for this.

Handing in: on paper in class is fine; otherwise scan/screenshot/photograph
into a single file and hand in on Canvas. Either way, one handin per group,
please.


