
CMSC162 Intro to Algorithmic Design II Blaheta

Lab 4
13/14 September 2021

Today you’ll experiment with some code to start to understand how C++

pointers work. But first:

Vim FOTD: “ex” mode

Open two terminal windows, and arrange them side-by-side. The one on the
left I will designate the “edit” window, and the one on the right the “other”
window. In the edit window, edit a file named dummy.txt, type a few lines
into it, and save and quit. (The content doesn’t matter at all.)

In the other window, cat the file, that is, type

cat dummy.txt

You should see the exact contents you just typed in. If not, make sure both
windows are in the same directory (your home directory is fine) and try
again.

Return to the edit window, again edit the dummy.txt file, and add a couple
more lines. This time, don’t save and quit. Back in the other window, cat
the file; since you haven’t saved yet, what should you see?

Return to the edit window again. Make sure that you are in command mode
(hit escape), and this time, instead of save-and-quit (with :wq), just save: if
you type :w by itself and hit enter, this writes the file without quitting. Now
in the other window, cat the file again—you should now see the updated
version.

What you are seeing here is (more of) a third mode of Vim besides insert
and command mode, called “Ex mode”. Ex was an editor back in the day, a
precursor to vi (which was itself the basis for vim). All interactions with the
ex editor were done through commands typed on a line that started with a
colon, and vestiges of this survive in the modern Vim editor; from ex mode
you control file access operations, among other things. The :w command
that you have just seen simply saves (“writes”) the current file.

Another command is to save to a different file. After you issued the :w



CMSC162 Lab 4 13/14 September 2021

command a moment ago you were returned to command mode, so press the
colon key again to return to ex mode and type

w dummy2.txt

This creates a brand new file, named dummy2.txt, with the current contents
of the edit buffer. But unlike “Save As...” in a typical modern word pro-
cessor, it doesn’t change the default name of the file, so that if you type :w

again, it will save it under the original name (dummy.txt).

You can use ex mode to edit a different file. Type

:e newfile.txt

and the dummy.txt file will disappear from the window, to be replaced by
an empty buffer. If you type text in here and then hit :w, it will be saved
under the name newfile.txt (as you can verify by using ls and cat to look
at the file from the other window).

If you then type

:r dummy.txt

it will read the full contents of dummy.txt into the current buffer.

Ex mode can be used to quit Vim by typing :q and hitting enter. Note
that this does not include writing out the file first. If you type :q before
saving (and you can tell that the file has been edited by the “[+]” after the
filename in the status bar), Vim will warn you that you haven’t saved the
file. You can then type

:q!

to say, no really, I mean it, just quit (don’t save).

There are other ex mode commands that we’ll learn eventually, but these
file-related commands enable a particularly useful interaction style: you can
now leave your source code open in one window, save it, and run the compiler
in the other window. This is useful so that you can keep any compiler errors
on the screen while you scan the code for the problem; in fact, from now on
you should get in the habit of having at least two windows open when you’re
programming: one for editing, and one for compiling and testing. (Some of
you have already been doing this, but it’s even more streamlined now.)

2



CMSC162 Lab 4 13/14 September 2021

Cards to play with

We’ve been using the example of a playing card class, and in the lab we’ll
continue with it. To get us started, I’ve put an upgraded version of that
class in /home/shared/162/lab4/ to save you some typing. Copy those files
into the directory you create for this lab.

Look at the files, but don’t modify them. (From vim, if you haven’t changed
anything and type :q, this quits without saving. If you accidentally make
changes inside vim, and still want to exit without saving, you can type :q!

to indicate that you really mean to quit without saving.) Read the parts of
the code that are new, and make notes of anything you want to ask about
(there will be time for this at the start of lab, and there are definitely at
least a couple techniques and C++ features that are probably new to you).

Constructing

Create a new file that you will call cardmain.cpp, and set it up to have a
main function in the usual way (with #include lines and so on). In addition,
be sure to #include <memory>. Type this in as the body of main:

Card* a = new Card (7, Card::SPADE);

shared_ptr<Card> b = make_shared<Card> (7, Card::SPADE);

cout << a->toString() << endl;

cout << b->toString() << endl;

Compile the program (remember that you’ll need to compile it together with
Card.cpp) and run it. You should see

7S

7S

If not, check carefully that you typed what I wrote above, and do your best
to remove the error.

Now, look back at those lines above. Identify the three places that this code
uses a syntactic feature we’ve not really seen before this week’s readings,
and in your notebook, write down what each of them means or does. (You’ll
probably want to refer back to your book or notes for this.)

3



CMSC162 Lab 4 13/14 September 2021

Equality

Add the following lines to the program:

shared_ptr<Card> c = make_shared<Card> (7, Card::SPADE);

shared_ptr<Card> d = make_shared<Card> (4, Card::HEART);

shared_ptr<Card> e = d;

cout << b->toString() << c->toString() << " b==c? " << (b == c) << endl;

cout << d->toString() << e->toString() << " d==e? " << (d == e) << endl;

Compile it, and run it. These two additional print statements do not produce
the same result. Why not? Continue on the same notebook page as your
earlier work and give your explanation, including a diagram of memory after
all these variables have been set.

Dereferencing

In some circumstances, we will have a pointer but need to make use of the
value it points to. First, let’s see what happens if we have a mismatch—add
the following lines:

cout << "b eq c: " << b->isEqualTo(c) << endl;

cout << "d eq e: " << d->isEqualTo(e) << endl;

Compile it and read the error message: in your notebook, write out the most
salient phrase(s) from the (several lines long) error message.

Fix the two lines by adding asterisks to the method parameters:

cout << "b eq c: " << b->isEqualTo(*c) << endl;

cout << "d eq e: " << d->isEqualTo(*e) << endl;

Compile it and run it. How does this output compare to the earlier lines?
(Write your answer in the notebook.)

Updating the dereferenced value

With pointers, you can change the value they point to (without “moving
the arrow”). That means that anything else that points to that spot will
also effectively be updated. Try this:

4



CMSC162 Lab 4 13/14 September 2021

*b = Card{9, Card::CLUB};

cout << b->getRank() << b->getSuit() << endl;

cout << c->getRank() << c->getSuit() << endl;

*d = Card{2, Card::DIAMOND};

cout << d->getRank() << d->getSuit() << endl;

cout << e->getRank() << e->getSuit() << endl;

Null pointers and language versions

Add the following code to the program:

shared_ptr<Card> f = nullptr;

Compile it. Now is a good time to remind you that we’re using the C++17
standard language, i.e. the version codified in 2017, and a lot of what we’re
doing here is newish as of C++11, and a lot of code out there is still written
against C++03 or earlier standards. nullptr is a more typesafe version of
what used to be written as NULL.

Pointer errors

Pointers get something of a bad rap because they can be the source of some
subtle (and not-subtle) errors in your code. In this section of the lab, I am
having you type in some intentionally-incorrect pointer code so that you can
see the error it generates. For each of the following pieces of code (most are
one line, some are two), add it at the end of the program and compile it
(and run it, if the compile was successful). Then, write down what the error
message was, if any (just a phrase or two if the error is long), and what was
actually wrong with the code. Then, delete that erroneous piece of code
before trying the next one.

cout << a.getRank() << endl;

cout << b.getRank() << endl;

5



CMSC162 Lab 4 13/14 September 2021

cout << f->getRank() << endl;

cout << b << endl;

Card* g = b.get();

cout << g->getRank() << endl;

delete g;

Finishing up

If you get this far before the end of the lab period, compare notes with the
other students in the lab, and help them if they’re stuck on some of the error
messages or other things they’re supposed to write in the lab. (That doesn’t
mean give them your work to copy, but do give assistance.) If you’ve come
to different conclusions about some part of the lab, try to resolve it, but if
not, that would be a great thing to ask about in class tomorrow!

Handing in

This isn’t a project-oriented lab, so there’s no code to hand in, but your work
will lead into class discussion tomorrow, and from there into a homework
assignment (which will be done on paper). So, no need to run handin this
week.

6


