
CMSC162 Intro to Algorithmic Design II Blaheta

Lab 12
13 November 2014

For today’s lab, you’ll glue together some of the code from several different
sources—a few recent labs, and the last few days of lecture—to make another
subclass of Set, this time implemented with a BST. But first, a few last
tricks. . .

Vim FOTD: Macros

A macro is a bit like a function for an interface—a stored multi-command
sequence that you can access with a quick keystroke or two. In Vim, you
can define them in your .vimrc file, so go to your home directory and edit
that. For this whole section, once you’ve made a change in the .vimrc, if
you save it and then open vim on any file (perhaps in another window), you
should see the results of your change.

The first thing to know is that internally, Vim refers to this process as
“mapping” keys to macros. So in my .vimrc I can type

map ! :!

and then whenever I’m in command mode, if I press ! it will act as if
I’ve typed :! (which is what I do to run a general-purpose command-line
command without leaving vim).

Sometimes, I need to insert characters into a text file that have special
meanings to Vim even in insert mode. For instance, if you type a word and
press ^W (that is, Ctrl-W) while still in insert mode, it will normally delete
that word. Putting a ^W character into a file requires a special override that
says to Vim: hey, take the next character I type literally instead of as a
command. This override is ^V, so to type a literal ^W into a text file, I press
Ctrl-V then Ctrl-W. (Try it, then delete the ^W character you made.)

If I want to write a macro command that involves using ^V, I need to enter
that character literally, which means pressing Ctrl-V twice. To enter this
macro into your .vimrc:

map ^V ^V^F

you need to press the following key sequence (all in insert mode):

CMSC162 Lab 12 13 November 2014

M A P space Ctrl-V Ctrl-V space space Ctrl-V Ctrl-V Ctrl-V Ctrl-F enter

Since ^F is a command to scroll down one screenful, this mapping makes
pressing the spacebar (in command mode) scroll down by one screenful,
which I find more useful than simply moving to the right by one character
(which is what spacebar does by default).

Two other quick facts before we wrap this up: Another representation of
the Escape key is as Control-[or ^[. (Try it—pressing Control and the left
square bracket should take you out of insert mode exactly like Escape does.)
And, a regular mapping will scan the macro expansion for further macros,
so if you’re mapping a key to an expansion that includes that same key, you
should in general tell Vim to map it without remapping, to avoid an infinite
recursion.

So, here’s the visual form of the macro that, in insert mode when the left
curly bracket is pressed, inserts both curly brackets at once:

inoremap { {^V^[o}^V^[%a

Remember that to type in the control characters you need to press ^V first
(which means that you’ll be pressing ^V three times in a row on part of that
line). You may find it instructive to deconstruct that line and see what each
element of it is doing.

Assembling the parts you’ll need

You’ll need most of your files from Lab 9 (at the least Set.h and probably
your testing code). (I think everybody got at least this much of Lab 9, but
if not, you can copy my Set.h from the shared directory.)

If you got Lab 11 at least mostly working, you can get your BinaryTree.h

and related files from there—convert it to be a tree that holds anything by
replacing char with Thing and preceding the class with

template <class Thing>

OR you may copy BinaryNode.h (a slightly modified version of the book’s
implementation from Chapter 16) from the shared directory. (But if you
have a working BinaryNode, it’s really better to modify and use that.)

2

CMSC162 Lab 12 13 November 2014

You’ll also want to grab your code for inPrint in Lab 11; and although
you’ll be modifying it, get contains as well.

You may want to bring in your Card stuff from Lab 10, particularly if you
got the less-than operator working, but this is purely optional.

You’ll also want to at look at your notes (and perhaps the board photos)
about binary search trees that we’ve been doing in class the last few days.

Finally, by the time you get this far I should have paused the lab for a brief
mini-lecture to finish working out pseudocode for the add method. You’ll
need that!

The task

As in Lab 9, you’ll implement a subclass of Set, this time called TreeSet.
Its implementation will use a binary search tree to store the elements, and
like VectorSet it will not even store duplicate values.

Some of the code for this is already written, and just needs to be adapted to
the current task! There is no need here to rewrite something from scratch
BUT you should be sure that the source is indicated; comments like

// adapted from class FooBarBaz written in lecture

or @author lines in class comments, e.g.

/** Description of class

* @author Don Blaheta

* @author Your Name

* @version updated date here (e.g. 13 Nov 2014) */

are how we do citations in the programming world.

When you first get started on this lab, your remove method should have the
following body:

cerr << "Not implemented yet." << endl;

until you get everything else pieced together and compiling and tested.

3

CMSC162 Lab 12 13 November 2014

You don’t need to worry about keeping the tree balanced; and you can
assume that any Thing that is used with your TreeSet has a working <

operator as well as ==. (This is true of all the relevant built-in classes, such
as int, char, and string, as well as many user-defined classes, such as our
Card class (if you got that far).)

In addition, though not required by the Set interface, your TreeSet should
have a friend operator<< function that prints out the contents by making
a call to your inPrint function.

The big thing that is not already written for you in some form is remove.
Think through what is involved in correctly removing from a BST; draw
out a few examples to help you identify the different cases you’ll need to
deal with. Write some test cases based on those examples. Then, use your
examples and test cases to help you write remove one piece at a time.

Hand in your work electronically as lab12. You should hand in whatever
you have by 4pm on Wednesday so I can check on it, but the final version
of the lab is due 4pm on Monday, 24 November.

RUBRIC

1 Present
1 Good readme
Gluing together existing code
1 TreeSet is a subclass of Set ♣
1 add implemented from pseudocode
1 Code for contains and inPrint imported and templated ♣
1/2 << prints contents of TreeSet with inorder traversal
1/2 contains exploits BST property
1 Test cases convincingly confirm that add, contains, << work (fail ok) ♣
Implementing remove
1/2 remove correctly removes values in leaves on multi-element trees
1/2 remove correctly removes value from one-element tree
1/2 remove correctly removes values in internal nodes
1/2 remove and destructor correctly delete nodes
1 Test cases convincingly confirm that remove works (fail ok) ♣

♣ indicates point is only available if the code compiles, with at least a stub
for the relevant method(s).

4

