
CMSC162 Intro to Algorithmic Design II Blaheta

Lab 10
30 October 2014

This week we’ll take a brief break from the Set library and revisit a class
we saw way back in Lab 4: Card, representing playing cards. At the time,
we were more focused on learning how pointers work, but today we’ll use
the class to practice operator overloading and some related ideas.

To start, copy the files from /home/shared/162/lab10/ into your working
directory for this lab. Look at the files; they are similar to the ones from
Lab 4 but I’ve updated a few things.

Vim FOTD: windows

Go into your directory (which you’ve already copied the lab files into) and
type

vim -o Card.h Card.cpp

Instead of opening all the files sequentially (as would happen if you omitted
the -o, it opens them all at once! If you use :q (which, you’ll recall, closes
a file without writing it), it just closes one of the windows. (:wq also affects
only the current window.) To add an extra window, another colon-mode
command is handy:

:new test_Card.u

will open a new window showing test Card.u . You can also try

:e Makefile

Notice that :new opens a file in a new window, while :e opens a file in the
current window.)

And, of course, when we say “window” here, it is only with respect to the
single vim process. All of these “windows” are within a single terminal
window. There are two main advantages to using vim windows instead of
separate terminal windows to edit multiple files: first, all the switching back



CMSC162 Lab 10 30 October 2014

and forth can be easily done from the keyboard. And second, they share
buffers, so you can hit 10dd in one window, deleting ten lines, and p in
another, pasting precisely those ten lines with no funny whitespace or line
numbers or tab conversion or anything else.

Vim’s window management commands start with Ctrl-W (abbreviated ^W):

^W h Left one window
^W j Down one window
^W k Up one window
^W l Right one window
^W w Cycle cursor through windows one-by-one
^W s Split current window into two windows (horizontally)
^W v Split current window vertically into two windows
^W r Rotate windows (actually changing their positions)

To quit all windows at once, use :qa. (If you’ve edited some of them, you
may need to use :wqa or :qa! .)

Defining ==

As you saw when you read chapter CI5,1 in C++ you can write method
definitions that let you use builtin operators like == or < with classes that
you write.

Go into Card and add a method to overload == to test whether two Card

objects are equal to each other. Conveniently (and not coincidentally),
there is already an isEqualTo method to actually do the work for you.
To declare the overloaded operator, you’ll declare a method whose name is
operator== , following the form on the middle of p416. When the method
is defined, the body can just call isEqualTo to do the work.

Don’t forget to add a test case to test Card to confirm that this works; note
that unlike the name of the method (which will be operator==), the name
of the test block has to be an identifier, so you’ll start it with something like

test opEqEq

1You did read it, right? If you didn’t, you probably ought to at least skim it now; I’m
not going to recap the whole thing here.

2



CMSC162 Lab 10 30 October 2014

So what?

We already had isEqualTo, so what benefit is there in overloading == ? The
convenience of writing something like

if (card1 == card2)

is nice, of course, but the big win is that a lot of library functions are
designed to use an overloaded == to do their work. Look inside the file
show library stuff.cpp now. Uncomment the first commented-out part
(now that you’ve implemented ==). Save the file, run make, and then run
./show library stuff to see what it does—it makes use of builtin library
functions to do its work, and they make use of the == operator to do their
work. In many ways, implementing certain operators lets you unlock a whole
section of the C++ library.

You’ll notice that all the library functions I’ve used in there take as their
first two arguments cards.begin() and cards.end(). This makes use of
something called “iterators” that we haven’t really worked with yet—we’ll
see more of them later, but for now, this is a way to tell the library algorithms
to process the whole vector, from beginning to end.

Defining <<

The C++ streaming (input/output) operators provide a nifty way for writers
of classes to make their objects “read-able” and “write-able”—since << and
>> are just operators, you can overload them too! When you write something
like

cout << 5;

the thing on the left is an ostream, and the thing on the right is an int, so
C++ looks for and finds a definition for operator<< that takes an ostream&

and an int. Deep in the libraries, there is a function defined whose header
is

ostream& operator<< (ostream& out, int n)

to do this work. Since that also returns an ostream&, it means that when
you write

3



CMSC162 Lab 10 30 October 2014

cout << 6 << 7;

it performs the first operation (cout << 6), which results in an updated
ostream that can serve as the left side of the next << operator.

In the past, we’ve made print methods that take an ostream& to do their
work; when we make an << operator, the body of that method will be
much like what we’ve written before; it’s really just the headers that will be
different.2

To make it possible to output your Card using streams, you need to do two
things:

1. In Card.h, in the public part of the Card class, declare a function called
operator<< that takes an ostream& and a const Card& , and returns
an ostream& , and precede this declaration with the word friend so
C++ knows it can look at the contents of a Card, and

2. In Card.cpp, write the function. The header will be the same except
for the word friend. (Notably, it will not include Card:: anywhere
in the line!) Do not print anything directly to cout here—use the
ostream parameter instead. (See p422 for an example.)

To test this, you can write a test case that creates an ostringstream and
prints some cards to it, and then verifies that the resulting string is what
you expected:

ostringstream testout;

testout << queenH << " " << jackC;

check (testout.str()) expect == "QH JC";

This is very similar to how the print method of Maze was tested in the code
I gave you for Lab 6.

So what?

The benefits of this one might be a little clearer—once you define a stream
operator for a class, you can put objects of that class into the stream just
as if they were built-in types. Once you’ve got it implemented, uncomment

2Again, I won’t recap the book here; read Section CI5.2 if you haven’t already.

4



CMSC162 Lab 10 30 October 2014

the second part of the demo file. Now that we can conveniently print out
Card values, you can see the effects of a few other library functions that got
unlocked when you implemented == .

Defining = and the Rule of Three

For a lot of classes, including Card, you may not need to explicitly overload
the = operator; if you don’t, the compiler will auto-define one that works well
in many cases (a fact that we’ve relied on any time we assigned a Location,
Card, or Maze to another variable!).

On the occasions when you do explicitly overload = , it should trigger in
your brain something called the Rule of Three,3 which goes like this: if you
explicitly define any of these three methods:

• assignment operator (overloading =)

• copy constructor (only argument is a const reference to the same type)

• destructor

then you should explicitly define all of them. (And, if inheritance is involved,
remember to make the destructor virtual.)

In the case of Card, it wouldn’t normally be necessary to do any of these,
because its only instance variables are simple integer types (a char and an
int). But it’s good practice! Write an explicit assignment operator as well
as a copy constructor and a destructor.

Other overloads

Overload < (less-than comparison). You should be sure to make aces high,
that is, an ace is not less than any other card (but all non-aces are less than
aces). You can ignore suit for this comparison. Once you’ve got it done,
you can uncomment the last part of the library demo file—you’ve unlocked
the builtin sort function!

Use the same technique you used on << to overload >> as well (this time to
read from an istream&).

3Some claim that in C++11 this needs to become the Rule of Five, but that will have
to be a story for another time.

5



CMSC162 Lab 10 30 October 2014

Handin

Hand in by 4pm Wednesday, as lab10.

Rubric (tentative)

RUBRIC

1 Present in lab
Defining ==

1 Header in class definition ♣
1 Body defined correctly
1 Tested in .u file ♣
Defining <<
1/2 Header correct, friend ♣
1 Body defined correctly
1/2 Tested in .u file ♣
Other definitions
1 < header and test ♣
1 < defined with correct ace logic
1 = and other rule-of-three methods ♣
1 >> ♣

♣ indicates point is only available if the code compiles, with at least a stub
for the relevant method(s).

Extras

Go back and revise your Maze and Location classes to make use of == (for
Location) and the stream operators (for Maze).

Then, go back and use a VectorSet<Location> in your doesPathExist

method to keep track of what’s already been explored, instead of the vector<Location>
that you used before.

6


