CMSC162 Intro to Algorithmic Design 11 Blaheta

Lab 5
25 September 2014

In this lab, you’ll work a little with linked lists, and see how to use the unit
testing framework with pointer-based data.

Before you get started, copy Node.h out of /home/shared/162 into your
working directory for this lab. This is the class file for the Node class from
the book, slightly adapted for our use.!

Command line FOTD: grep

The grep command is a general search tool that lets you find occurrences
of some pattern in a whole batch of files. For instance, if you type

grep Node Node.h
you’ll get a listing of every line on which the word Node shows up in the file

Node.h (which is a lot!).

But grep is more powerful than that. Its first argument is what’s called a
“regular expression” or “regex”, and lets you search for some pretty com-
plicated things. You can get more information on this on your own, but a
few quick tricks:

e By enclosing the pattern in (single) quotes, you can search for strings
with spaces in them:

grep ’void set’ Node.h
e To match any amount of any text, use the “period asterisk” wildcard
(note that for filenames on the command line we use asterisk by itself,
but within a regular expression we need the period plus the asterisk):

grep ’ItemType.*item’ Node.h

e To match the beginning or end of the line, use caret and dollar-sign
respectively.

'Specifically, I put it all into a single file for our convenience.



CMSC162 Lab 5 25 September 2014

grep ’"Node’ Node.h

will give just those lines that start with Node.

Vim FOTD: searching (and replacing)

From command mode, if you hit the forward slash key,? it’s a little bit like
colon mode: the cursor moves to the bottom of the screen and awaits further
input. But what it’s waiting for now is a regular expression to search for.

Having just explained regexes in the context of grep, there’s not much more
to explain here; they work essentially the same way. After the initial slash,
you type a regex and hit enter, and Vim will find the next place in the file
that matches that regex, or if there are none it will tell you that.

Also inside command mode, the n command will repeat the previous search.
So pressing n repeatedly will cycle through all matches in a file. Using N
instead goes through matches in reverse order.

The n command together with the period command (which repeats the
previous command) is a workhorse combination: first, search for a pattern
and do something; then alternate n.n.n. until you've done your action
every place that pattern occurs. Try it in Node.h: Let’s say that instead of
ItemType as the stand-in name of the type this object contains, we prefer
Thing. Press / and type ItemType (and hit enter) to find some occurrence of
that word. Then, type the command cw to “change word” and type Thing
(and hit escape) to complete the change. Now press n to go to the next
occurrence, and press period to make the same change. Keep pressing n and
. until you've made that change throughout the file.

You can either save and quit (if you prefer Thing), or save without quitting
(using :q!), but other than that change, you should not need to further
modify the Node.h file for this lab.

Planning linkSearch

Continuing from class, recall that we were planning a function with header

?Having trouble remembering which is forward slash and which is backslash? If you
imagine them walking across the page from left to right, the forward slash is leaning
forward: / And the backslash is leaning backward: \



CMSC162 Lab 5 25 September 2014

bool linkSearch (Node<char>* node, char value)

that determined whether the group of nodes starting at the given Node
included the given value. (Note that this is a function, not a method of
Node or any other class.)

You might want to look at the board photos from yesterday’s class to remind
you what your group did (and what the other group was up to). Remember
that both of those implementations were still in the planning stages (i.e. still
buggy), though!

There are three things we need to account for in the repetition of this search:

e We don’t find it
(the current node is nullptr)

e We find it
(the current node has it as its value)

e We have to keep looking
(continue on to the current node’s next)

Mark up the above list with, on the one hand, how these parts map out to the
different elements of iteration (init loop variable, keep-going condition, etc),
and on the other hand how they map out to the elements of recursion (base
case, etc). Consult your notes (or the left board photo from 12 September)
to make sure you haven’t missed anything.

Stub functions

The code for linkSearch will be separate from the Node class, so we’ll
need a separate .h and .cpp for it. Inside nodefunctions.h, you'll write
the function prototype; and since you’ll be doing two implementations, I'm
going to have you write two nearly-identical prototypes (the only difference
is their name):

bool linkSearchRec (Node<char>* node, char value);
bool linkSearchIter (Node<char>* node, char value);

(This file will also need to have the #include for Node.h.) Then, in the file
nodefunctions.cpp, you'll write—for now—stub functions:



CMSC162 Lab 5 25 September 2014

bool linkSearchRec (Node<char>* node, char value)

{

return false;

}

bool linkSearchIter (Node<char>* node, char value)
{

return false;

}

Examples and testing

Edit a file named test_nodefunctions.u or something similar. Start a test
suite—refer back to Labs 2 and 3 for instructions on how the .u file is laid
out—and in the test fixture, type in the two examples we wrote in class,
or similar ones of your own devising. Add an example that refers to a link
chain with a single element, and name it appropriately.

You should now have at least three examples: one that represents no node
at all; one with a dead end node that contains just a single element; and
one that (indirectly) contains at least three elements (that is, it contains
one and points to further Nodes with the other two elements).

A note about deleting

Strictly speaking, using new without somewhere making plans for a matching
delete is a bit dodgy, as I said in class yesterday. Testing software such
as unci provides a mechanism to “tear down” a test fixture, which is where
calls to delete will normally go, but I choose to defer this until a bit later.
So: file away in your brain that we will have to worry about delete at some
point, but for now let’s move on.

Testing linkSearch

Now that you’ve made the examples (and checked that they compiled,
right?), you can encode the test cases for a linkSearch function. Make
two test blocks, one called emptyRec and one called emptyIter, and fill
them in:



CMSC162 Lab 5 25 September 2014

test emptyRec
{

check (linkSearchRec(emptyChain, ’K’)) expect false;
}

This statement is almost identical to one of the ones you wrote on the board
yesterday, except the call to linkSearch is now linkSearchRec (also, the
letter being searched for is different, not that it matters). Your emptyIter
test block should be the same except testing linkSearchIter instead, be-
cause both functions have the same interface and are supposed to behave
the same.?

Write additional test blocks to encode the other test cases you wrote on
the board. (You can have multiple test cases per block, but group them
logically.) Add some test cases that make use of the one-element chain you
created earlier.

Compile and run your test suite to make sure you haven’t made any ty-
poes or other mistakes. Of course, since we still only have stub functions
for linkSearchRec and linkSearchIter, some of the tests should report
failures (if not, you need more or better test cases!).

Writing linkSearch

In your nodefunctions.cpp file, you should now actually write the imple-
mentations you planned out earlier. If you get stuck on one, make sure that
it at least compiles and then work on the other one for a while.

Handing in

This is feeding into class Friday and an upcoming homework; do as much
as you can and make note of any questions you have, and bring those with
you to class, but no need to run handin this week.

3In fact, if you make use of the Vim features from last week (yanking many lines at
once and pasting them) and this week (search and replace), you should be able to add the
test for linkSearchIter with almost no new typing at alll



