
CMSC162 Intro to Algorithmic Design II Blaheta

Lab 1: Maze setup
28 August 2014

Our first long-running project in this course will be a maze solver. Eventu-
ally, your program will be able to analyse a maze and animate its solution
using different strategies; but we need to cover a bit more material before it
can manage all that.

What we can do today is learn or remember how to use a command line, set
up the basic file format, and shake some of the rust off our programming
skills.

So here’s the entire content of today’s lab/this week’s project: read some-
thing that looks like this:

7 4

#######

#...#o#

#*#...#

#######

from a file named at the command line; store it in a 2D array; and then
print it back out again, followed by the coordinates of the start and the
coordinates of the finish.

That’s it! The entire rest of this handout just gives more detail, some
warnings, and a few suggestions on how to approach the problem.

First: the command line

I will demo how to use PuTTY to access torvalds, but for your future refer-
ence, the remote login instructions are linked from the course webpage.

Once you are logged in: you’re now in your “home directory”, which you can
list by typing ls (that’s a lowercase L) and hitting enter. To keep everything
tidy in your account, first you probably want to

mkdir 162

cd 162



CMSC162 Lab 1: Maze setup 28 August 2014

to create a directory named 162 and, for now, change to that as your working
directory. In the future you won’t have to mkdir, but you’ll cd 162 every
time you log in to work on this course. (You’ll want to keep other directories
for other courses that you’re taking now or in the future.)

These commands and several others are laid out in the “Command line
starter kit” page stapled to the back of the lab.

To open the editor for a file called hello.cpp, you can now type

vim hello.cpp

When the vim editor first opens, you are in “command mode”. To switch to
“insert mode”, which is the mode that lets you actually type things in, press
i once. Then, type in a C++ hello world program.1 When you are done, or
at least ready to compile, press the Escape key to exit from insert mode to
command mode, then type :wq to write the file and quit the editor.

These commands and several others are laid out in the “vim starter kit”
page stapled to the back of the lab.

Finally, at the command line, type

compile hello.cpp

to compile the file. This is a script I’ve installed locally to run the C++

compiler with some useful settings; it will show you the exact command that
it runs (the line starting with g++), followed by either a success message or
a compiler error.2 If there are errors, edit the file again and fix them; if not,
the compiler has just created an executable named a.out. To run it, type

./a.out

and verify that it runs correctly.

You’re now ready to move on to the actual body of the lab and write the
maze reader.

1That is, a program that prints “Hello, world!” to the screen and does nothing else.
Hello world programs serve to let you check that you understand how editors and compilers
work before you worry about writing more complicated programs.

2You may be more used to running g++ directly. It’s still possible to do so, but if you
use compile it runs it using an updated C++ standard, prepares the output for debugging,
detects a number of mistakes that novice C++ programmers often make, and limits the
output to the first error message—none of which are done by default if you just type g++.

2



CMSC162 Lab 1: Maze setup 28 August 2014

Setting up the program

Create a directory inside 162 called lab1 to hold your work for this lab.
You’ll need to use mkdir to do this (see the front page or the command line
reference if you don’t remember how). Don’t forget to use cd to go into the
lab1 directory once you make it!

Before you start writing code, it’s generally a good idea to at least start your
documentation file. Edit a file that will be called README.txt to contain this
documentation; at this point you will be able to put your name, the name of
the assignment, and a brief description of what it does. Eventually, before
handing in, it should (at a minimum) contain instructions on how to compile,
run, and test your program.

The input format

Every maze file that your system can handle will have the same format:
the first line will contain two numbers (the width and height of the maze);
subsequent lines contain a map of the maze itself, with each different type
of maze content represented by a different character:

walls # (hash mark)
open spaces . (period)
start o (lowercase ‘O’)
finish * (asterisk)

Each maze will have exactly one start and exactly one finish; though note
that not all open spaces need be reachable from the start, and the finish
may also be unreachable.

The output format

The output of the program should start with a repeat of the input, followed
by lines that identify the coordinates of the start and finish. For the example
on the first page, that would be something like

The start is at (5,1).

The finish is at (1,2).

3



CMSC162 Lab 1: Maze setup 28 August 2014

Testing

Here is the example from the first page side-by-side with the expected cor-
responding output:

CONTENTS OF INPUT FILE OUTPUT

7 4

#######

#...#o#

#*#...#

#######

7 4

#######

#...#o#

#*#...#

#######

The start is at (5,1).

The finish is at (1,2).

Type the maze on the left into a file named test1.in . You would now be
able to test your program by running

./a.out test1.in

and then carefully visually inspecting the output to compare it with the
contents of the OUTPUT box above. But that’s tedious and prone to human
error. Instead, I want you to put the OUTPUT box into its own file named
test1.out (the easiest way is to copy test1.in to test1.out and then add
the extra two lines at the end), and then run

./a.out test1.in | diff test1.out -

If this command prints nothing, the program output was identical to what
was expected—so it was correct. If there were any differences, though, they
will be printed.

As usual you should also come up with a few test cases of your own; right
now make at least a test2.in and matching test2.out, and if you think of
other interesting examples, add them later. Note that the input file format
does not require that the file end after the last line of the maze, and leaves
the further content of the file unspecified—a good use of this fact would be
to write a little comment at the end of the file explaining what interesting
case that particular maze is there to test.

Some likely gotchas

Don’t forget your #include lines, and don’t forget about std.

4



CMSC162 Lab 1: Maze setup 28 August 2014

At the start of the file, you’re reading numbers (ints, presumably), but sub-
sequent lines you’ll want to read line-by-line using getline. What happens
to the newline after the second number?

Because of some quirks of 2D array representation in C and C++, you actually
won’t be able to write functions that pass the 2D array as an argument.
We’ll see a way around that problem later this week. For now, all the array
manipulation (and possibly the entire program) will have to go in main.

Tips

Start by creating the smallest program that compiles and runs, and keep
adding little pieces that you test by compiling and running. This is general
advice for any programming work you ever do!

You could write an algorithm to scan the 2D array in order to find the start
and finish, but it’d be easier to just check for them when you’re reading in
the maze in the first place.

If you don’t remember how to do file I/O, the thing you want to look up is
ifstream.

Never learned how to get strings from the command line (as you’ll have to
do for the filename here)? If you declare your main function as

int main (int argc, char *argv[])

then you can refer to the first command-line argument as argv[1], which is
a C string (a char *).

Handing in

There is a program called handin to submit your work. In a window where
you are in the directory with your work for Lab 1, you can type, for instance,

handin cmsc162 lab1 maze.cpp README.txt test1.in test1.out

This line tells the program what course you’re handing in for, what as-
signment you’re handing in for, and finally what files to include—use the

5



CMSC162 Lab 1: Maze setup 28 August 2014

filenames you actually created, and make sure you hand in all the necessary
files.

The lab handin is due Wednesday the 3rd at 4pm. (Labs will, in general,
be due the following Wednesday afternoon.)

Rubric notes

Lab grades, including this one, will typically include a small portion (10–
20%) for lab attendance and performance and a small portion (10–20%) for
documentation and testing; with the rest for correctness.

If your code does not compile, or if it compiles but immediately crashes
before producing any output, you will in general receive very few of the
remaining points! It is always better to submit a program that compiles and
runs, but is incomplete, than to submit a program that “has everything”
but doesn’t run at all.

Specifically, here is the plan for this week’s rubric:

RUBRIC

2 Present in lab
General
1 Handin includes readme file with appropriate documentation
1 Correct file headers and main

1 Program compiles and runs
Maze
1 Command line argument and file access
1 Declares 2D array of appropriate size
1 Reads/stores maze
1 Prints maze from array
1 Identifies start/finish and prints coordinates

Extras

When you store the coordinates for the start and finish location, use a
struct or class object to bundle the x and y coordinates together.

6


