
CMSC160 Intro to Algorithmic Design Blaheta

Lab 11
Weather stats

10 April 2018

This lab will give you continued practice working with structs and with
vectors and with vectors of structs (and writing functions for them, and ad-
ditionally will involve reading in data rather than hand-building the vectors
and structs in a test suite.

1. To get started on this part of the lab, copy some files into your di-
rectory. The task of the week will involve processing weather data, so
first, you’ll copy a set of weather data, found in

/home/shared/160/weather-big.txt

/home/shared/160/weather-small.txt

into your own working directory for this lab.

2. Look at (but don’t change) the contents of the files, then continue
reading for their description.

These are data about the weather for the month of August 2009 in Gales-
burg, IL (where I worked at the time). Each line of the file contains infor-
mation about the date and time it represents, as well as the temperature
(in degrees Fahrenheit) and the wind speed (in miles per hour). This is a
sample line illustrating the format:

08 02 2009 18 00 76 12

The date is first, then the time: this line represents August 2, 2009, at 18:00
(6pm). The temperature was 76◦F, and the wind was blowing at 12mph.
The “big” file contains measurements for every hour that month; the “small”
file contains two days. (You’re also encouraged to create your own files, even
smaller, for testing purposes, but make sure they follow the same format.)

3. Based on the description above, and using the examples of Card and
Location (and the struct you wrote for last week’s lab), define a



CMSC160 Lab 11 10 April 2018

struct called Weather that is capable of holding all the data on each
line of our data file. This definition should go in a file Weather.h

(which will also be where the related function headers will eventually
go).

4. In a file called run weather stats.cpp, make sure to #include the
file you just created, and then define a main that can read in all the
pieces from one line and make a Weather value that bundles them
up. (This struct will have seven fields, bigger than we’ve seen before.)
(Look at the files in /home/shared/160/0409/ to see what we defined
in class, for a pattern to follow.)

5. Verify that it compiles. Have you started a readme yet to put the
compiling and testing commands into? You should start a readme to
put the compiling and testing commands into.

6. Wrap that in a loop, as we did in class Monday, that keeps reading
until we run out of input, and builds a vector of Weather objects.

7. Add a function header to Weather.h that will determine whether the
temperature in a given vector of weather values ever dipped below 55
degrees.

8. Create a file Weather.cpp with a stub for the function you designed
in the previous step.

9. Create a file test Weather.u and write tests for the function you’ve
designed. Note that the vectors you use for your test cases only need
to have a handful of values to effectively test the function, but they
should be valid and plausible weather values.

10. Go back to the run weather stats.cpp file and after the vector of
weather values is read in, have it print the result of a call to the
function you’ve been writing. (Note that cout prints bool values as 1
and 0 by default, which is fine by me if it doesn’t bother you.)

11. Finish writing the function.

2


