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Welcome to CMSC 160!

Textbooks are important and valuable, but it’s been clear for a while now that
they’re not $150-valuable, or whatever the typical number is now. This is a course
pack that is textbook-ish, but free, and actually follows the order I plan to teach
things. On the other hand, it’s shorter than a standard textbook and not as well-
filled with exercises and review questions, or reference content; I strongly encourage
you to also look around for other online resources that click with you.

How to use the course pack

In general, treat the sections assigned for a particular day like you might treat a
posted video lecture to watch before class: watching the video, or reading the section,
preps you for the content of the day so that you are optimally ready to learn. If
the section raises questions in your mind, that’s great! Ask them in class—other
students probably have the same questions.

When there are programs in the reading, or sections of programs, you should type
them in and run them! Merely reading them will give you passive familiarity with
some of the programming ideas, maybe, but the only way to really learn this stuff
is to actively engage with it, write programs, make mistakes, fix them, and ask lots
and lots and lots of questions about all of it.

Also, if you spot any typoes, please let me know. This is a work in progress. :)

Legal notes: I do expect that once it’s done I’ll make it freely distributable and
remixable and so on, but while it’s still so drafty, I’m reserving the copyright; if
you’re in my class you can download it to your computer and even print some or
all of it if you like, but please don’t upload it anywhere or redistribute it just yet.
©2023 Don Blaheta.



Chapter 1

Algorithms: precise and
abstract

v20220807-1600

In this book and this course we’ll be developing a number of skills. In addition to
the most obvious one—programming—we’ll use programming projects to develop
ways of thinking that will be of use in larger projects and even outside of computer
science: precision, and abstraction.

When you give instructions to another human about how to do something, you can
usually rely on them to fill in some details. If the instructions are ambiguous or
unclear, they’ll either use their own judgement to resolve what to do, or ask for
clarification. Computers don’t have that kind of judgement, so rather than “asking
for clarification”, a computer faced with even slight ambiguity in a program will
simply reject it and make you fix it. Modern systems are usually pretty good at
highlighting where the ambiguity is, so you will be able to fix it, but as time goes
by, you’ll get better at thinking precisely about a task and specifying exactly what
you intend to happen.

But sometimes you can provide instructions precisely—clear and correct instructions—
while some details are still up in the air, by including how to react to the remaining
unknowns. A knitting recipe that can be made in size small, medium, or large, with
instructions on what to do differently for each one, can still be perfectly clear and
well-specified. Furniture assembly instructions can be written for two similar mod-
els by having a segment in the middle that specifies “for model A, do these steps,
but for model B, do these steps instead—then return to the shared instructions for
both models”. We say that such instructions are abstract (rather than concrete)
when the writer leaves some of the details open but is still able to fully and carefully
specify what should happen in each circumstance.

An algorithm, in computer science, is a series of instructions that is clear and precise, algorithm
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CHAPTER 1. ALGORITHMS: PRECISE AND ABSTRACT 2

aiming to achieve a goal, which is guaranteed to finish once applied.1 All algorithms
must be precise, by definition, and virtually all interesting algorithms are at least
partially abstract, working flexibly in reaction to different users or times of day or
locations or some other source of variation.

Precision and abstraction are part and parcel of any programming effort, and in this
course you will develop both thinking skills. Now let’s write some programs!

1Informally, the word “algorithm” can also refer to ranking strategies used by social media
platforms to choose what to display to their users. To relate this back to its formal definition, we
can consider the task or goal as something like “given a particular user at a particular time, identify
the next post or video that they should be served”.



Chapter 2

Output, input, and variables

v20220823-1700

In this chapter, we’ll write and execute our first programs.

2.1 Hello world, output, compile-and-run

In the book that introduced the C programming language—a predecessor of the C++

that you’ll be learning here—authors Brian Kernighan and Dennis Ritchie presented
a short C program that printed the text “hello, world”, intended as the shortest and
simplest program in that language. Since then, it has become conventional for a
programmer’s first program in any language to be one that simply produces the
text “Hello, world!”. Simple, but it ensures that the tools you’re using let you type
in a program, and run it, without any additional fuss.

In a project on codeboard.io, or any other environment that lets you type in C++

programs, enter the following program (some of which may already be filled in for
you):
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CHAPTER 2. OUTPUT, INPUT, AND VARIABLES 4

1 // First "hello world" program

2 #include <iostream>

3 using namespace std;

4

5 int main()

6 {

7 cout << "Hello, world!" << endl;

8 return 0;

9 }

Program fragment 2.1

Attend carefully to detail here: although some details (spacing, for instance) can be
changed without altering the meaning of the program, most of the program needs
to be typed in precisely as shown above, or it won’t work correctly.

Once you’ve typed in your program, most C++ programming environments require
two distinct steps to execute your program: first compile, then run. The compiling compile

runstep verifies that what you’ve typed is in fact a valid program—not that it’s 100%
correct but at least that it is clear and will do something—and the compiler trans-

compilerlates it into a machine language that the computer can run directly. Running the
program, then, actually executed the machine language according to the instructions
you’ve written.

Try it now! Compile your program, and then run it. If you’ve typed it exactly
correctly, the compiling step will run with no errors and the running step will put
“Hello, world!” on the screen. If the compiling step gives error messages, look care-
fully at what you typed, particularly on the lines that the error messages indicate.
Fix any problems and try it again!

Once you’ve got a program that successfully produces “Hello, world!”, don’t move
on just yet. Starting from a definitely-working program, it can be highly instructive
to intentionally make some changes and see their effect. Try changing something
about the program, and then re-compile it. Read the error message, if any; since
you made the change yourself, you know exactly what you typed to cause that
particular message. Much like a scientific experiment, you can vary tiny details of
your program and see how the compiler reacts to the change, as a way to build your
understanding and mental model of how the compiler works.
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2.2 What are all those pieces?

The program you typed in was eight lines long and it will be a while before all of
them will be fully explained. For the next few chapters, all your programs will begin
with the same few lines, and the differences will be in the very first line describing
the program, and the line or lines between the curly brackets { }.

The identifier cout, usually pronounced “cee-out”, indicates that something is being cout

sent “out” as output from the program to the screen, or sometimes as printing .1 The output

printing
identifier endl marks the end of the line of output. A semicolon will appear at the

endl

end of most instructions that you write for the computer. And the arrows (<<) mark

<<

out the different elements of the output stream, pointing towards the cout because
here the information is being sent towards the output.

2.3 Input and output

The program from the previous section runs exactly the same every time and always
produces the same message, but most interesting programs will behave differently,
in reaction to some information provided by a user. We refer to that information
as input , moving from the user into the program, by analogy with the output that input
moves out from the program back to the user.

Edit your existing project or start a new one, and type in the following program,
and compile and run it:

1The term “printing” is a callback to a time—many decades ago now—when all output was
printed on paper, but the term stuck and we use it even when “printing” to the screen.
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1 // Doing a little arithmetic

2 #include <iostream>

3 using namespace std;

4

5 int main()

6 {

7 cout << "Type your name:" << endl;

8

9 string firstname;

10 cin >> firstname;

11

12 cout << "Hello " << firstname << endl;

13 return 0;

14 }

Program fragment 2.2

When you run it, notice that it produces the first output (“Type your name: ”)
and then seems to halt. It’s waiting for you to provide information into the system.
Once you type a name, and press enter, it will then continue to the final statement,
which prints a greeting using that name.

Run the program a few times, trying different inputs to see how it reacts, and
identify the limits of the program so far. What does it do if the name includes
punctuation, like a hyphen or apostrophe? What does it do if you start the input
with spaces? What if there are spaces in the middle of the name?

Now try changing the program itself. The two lines in the middle read the user’s
name as input—what happens if those lines change? Can you read two different
names? How can you modify the final output command to print more than one
name?

2.4 Variables and types

You might have noticed an interesting difference between output and input in the
program from the previous section. Output is triggered with the use of cout, arrows,
and some information to send. But input is indicated by the use of cin (pronounced cin

“see-in”) and arrows towards a placeholder to be used later, and that placeholder
needs to be set up in advance.

The placeholder is called a variable—its value might be vary, be different, the next variable
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time the program runs—and can be thought of as a named value, or more precisely,
a named container that holds a value that we’ll want to make use of later. We don’t
know in advance what name a user will type in, so we refer to it in the abstract as
firstname. Any time you read input from a user, you’ll use a variable to do so. Its
name should be descriptive, if possible; it can’t include spaces or punctuation but it
can include the underscore character (‘ ’) if you find that useful to visually separate
“words” in a longer variable name. It can also contain digits like 1 or 2 as long as
it doesn’t start with them.

Setting up a variable is referred to as declaring the variable, and is done by indicating declaring
the type of value that the variable will hold. For now there are three possible types

type
of values that we’ll work with:

string General text, anything you can type on a keyboard
int Integers: whole numbers and their negatives
double Other numbers: if you’ll need fractions or decimals

In the previous program, the requested name wasn’t a number, so we declared it as
a string. Compare to the following program (type it in and try it!):

1 // Program with input and output

2 #include <iostream>

3 using namespace std;

4

5 int main()

6 {

7 cout << "Type a whole number to triple:" << endl;

8

9 int number;

10 cin >> number;

11

12 cout << "Triple " << number << " is " << number*3 << endl;

13 return 0;

14 }

Program fragment 2.3

We’ll see more about arithmetic operators in a few more chapters, but for now use
the rule of thumb that if a value is one that you’ll want to do math on, you should
declare it as a number (either int or float), and if you’ll just want to hang onto
the text without doing math, it’s just text (a string).
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If you were very, very careful—and a little lucky—you might have typed in that first
program without errors. Even if you did, back in Section 2.1 you were encouraged
to actively break your program in a variety of ways.

It’s really important to emphasise that error messages are your friend here, not
your enemy. Every programmer, even the most experienced ones, make errors in
their code very day; the essence of software development is in discovering how the
program ought to be written by trying things, observing them, and fixing them.
Every time you get an error message, take it as constructive feedback on where to
look and, maybe, what’s wrong.

Any compiler error will give you a filename and line number where it detected the
problem, and generally some summary of the problem. Take both with a grain of
salt: the line number is often close but sometimes a little after where the problem
actually is. And the identification of the problem is the compiler’s best guess,
but even if it suggests a fix, you should keep your brain turned on and see if the
suggestion makes sense. Maybe it’s right! But maybe not.

That’s why it’s a good idea, early in your C++ programming career (i.e. now), to
take an actually working program and try breaking it in little ways, because then
you know exactly what you changed—and now you will have a better idea what
the error messages are really pointing to. Start a notebook (on paper or maybe in
a file somewhere) of error messages, connecting the wording that seems confusing
with what the actual problem actually was. Then, when you get that error message
again in a less-controlled situation, you’ll have a better guess how to fix it. Taking
notes like this will also let you ask better questions later, about what various words
mean or how to interpret certain phrases. (Writing down the message exactly also
makes it easier to do an internet search for what it might mean!)

8
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Conditional execution
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In this chapter we’ll see how to make a program execute certain instructions only
under certain conditions, rather than every time the program runs.

3.1 Comparison, if, else

In most programs of any interesting depth, there will be at least some behaviour
that will be different depending on what exactly the user types. If you envision the
pattern of executing instructions as flowing from the first instruction to the end—
sometimes called a flowchart—then conditional execution represents a fork in the flowchart
road.

9
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Figure 3.1: A fork in the road

A C++ program corresponding to this flow pattern needs to specify how to make
the decision—for now, it will be a comparison between a variable and some other
value—and then the instructions to follow in each case. Consider (and try typing
in!) the following program:
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1 // Demonstrating if and else

2 #include <iostream>

3 using namespace std;

4

5 int main()

6 {

7 cout << "Type any integer:" << endl;

8

9 int number;

10 cin >> number;

11

12 if (number < 0)

13 {

14 cout << "Your number was negative!" << endl;

15 }

16 else

17 {

18 cout << "That definitely wasn't negative." << endl;

19 }

20

21 cout << "That's all for now." << endl;

22 return 0;

23 }

Program fragment 3.1

Several parts are as we’ve seen before, but focus now on the eight lines beginning
with the keyword if. That line contains the comparison condition itself; then there
are some instructions in curly brackets to follow if the comparison is true, and some
other instructions for if the comparison is false.

The keyword if is, in C++, always followed by a pair of parentheses with a condition if

to check. Here, we see an inequality between the value in a variable (number) and
a literal exact value (0). The less-than and greater-than comparisons on numbers
work just like you’d expect from math class.

Next, we see a block of instructions, that is, lines enclosed by curly brackets { }. block
We’ve already seen that curly brackets enclose the entire program, but blocks like
these also represent smaller pieces of a program that are controlled by control state-
ments such as if. control statements

Then we see the keyword else followed by another block. The word “else” exists in else
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English but usually isn’t used quite in this way; a better translation into informal
English might be the word “otherwise”, indicating the alternate path to take when
the first path isn’t chosen. But the word “else” is just four letters long—less to
type—and more importantly it’s standard across all programming languages with
exactly this meaning, so else it is.

3.2 if by itself, equality

Sometimes the flow of the instructions involves simply deciding whether or not to
do something:

Figure 3.2: Instructions on only one branch

If the “else case” is simply to do nothing at all (and then continue on to the shared
rest of the instructions), you can certainly still be explicit about that, and leave the
else block as an empty pair of curly brackets, but you can also simply omit the
word else and the associated block. Consider the following program fragment:
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1 string name;

2 cin >> name;

3

4 if (name == "Nobody")

5 {

6 cout << "That's an unusual name." << endl;

7 }

8

9 cout << "Hello, " << name << endl;

Program fragment 3.2

(Note that starting now the program examples will sometimes not include the entire
program—when you type them in you’ll have to type in the standard first few lines
yourself. Refer back to earlier program examples if you need to!)

This program expects the user to type a name, and only in the special case where
that name is literally "Nobody" it will make a comment about the name, but then
in all cases (including if the name was "Nobody") it will greet the user by name.

There are a few other things to observe about this conditional statement. First, the
comparison itself: when the condition is an equality comparison, we write it with == ==

(sometimes read aloud as “double-equals” or “equals-equals”)—it’s important that
you use == instead of = for this, because = does something a little different, which
we’ll see in the next few chapters.

Second, notice that the name "Nobody" is written in double-quotes. As we’ve pre-
viously seen in cout statements, double-quotes are a way to tell the program to use
a literal exact sequence of characters, and indeed we will refer to this construct as
a string literal . (Unlike some other programming languages, in C++ a string literal string literal
must be surrounded by double-quotes, as single-quotes do something a little differ-
ent.) By contrast, the identifier name is not surrounded by double-quotes, because
we don’t want to refer to the exact sequence N-A-M-E but rather whatever value is
stored in the variable name.

All four of these changed if lines represent a subtle and slightly different error in
the above program:

if ("name" == "Nobody")

if (name == Nobody)

if (name == 'Nobody')
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if (name = "Nobody")

Try typing each one as a replacement for the original if line, and then compile and
run the program to see if you can see how its behaviour changes!

3.3 Multi-way decisions: else if

The basic functionality of if and else enables us to make either-or decisions about
how to proceed, but it is frequently the case that we have three (or more!) paths to
manage:

Figure 3.3: A three-way decision...

To encode that into a program, we reframe it as a series of two-way decisions: are
we in the first case? otherwise, are we in the second case? And so on:
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Figure 3.4: ...restructured as two two-way decisions

You might notice from the use of “otherwise” in that informal description that our
C++ solution to this will involve the use of else. The following code fragment shows
a three-way decision being made:
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1 int age;

2 cin >> age;

3

4 if (age < 13)

5 {

6 cout << "Your teenage years are ahead of you." << endl;

7 }

8 else if (age < 20)

9 {

10 cout << "You're a teenager!" << endl;

11 }

12 else

13 {

14 cout << "You are no longer a teenager." << endl;

15 }

Program fragment 3.3

There’s no real limit to the number of clauses you can chain together like this. For
a five-way decision, you could write the initial if, three separate else if clauses,
and then the final else. You could even make a twenty- or hundred-way decision
(but it would be tedious to type and there probably is a better way to do it).

There’s something else interesting about the condition on the else if line, though.
Not all people under 20 are teenagers, but the condition on that line is simply
age < 20. Why does that work? Look back at the flowchart: we only even ask this
second question if the answer to the first question was “no” (or “false”). So the
comparison age < 20 is only being performed in the cases where age is at least 13.

If what’s intended is a multi-way decision like this, it’s important that all the middle
clauses in the chain are written with else if. To see why, try changing that middle
line to simply

if (age < 20)

and try running it with various different ages to see how it behaves.

3.4 Nested conditionals

The last variant we’ll see in this chapter is something called nesting , that is, putting nesting
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one block inside another. In some sense, we’ve already seen an example of this:
everything between the curly brackets under int main is a block, the block that
contains all the program instructions; and the curly brackets under if and else are
also blocks, but inside the larger block. One way to visualise this concept of blocks
is to imagine that each curly bracket is marking two corners of an invisible box,
whose contents are the instructions inside the block. Here’s a visual of that, with
the first program from this chapter:

Figure 3.5

We’ve already said that the contents of an if block can be multiple instructions;
in fact it can be arbitrary code, including other if blocks. Anything that can
go inside a program (the red box in the diagram) can go inside an if block or
any other block. When the contents are themselves a conditional statement, the
usually-invisible boxes might look something like this:
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Figure 3.6

The green (innermost) boxes are nested inside of one of the blue (middle) boxes in
just the same way the blue boxes are nested inside the outermost red box. And while
the boxes may be visually satisfying, all the actual structural information in that
program is carried entirely by the curly brackets themselves; with a little practice,
you’ll start to see the boxes even when they’re invisible:
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1 int main()

2 {

3 cout << "Type the temperature and the current hour:" << endl;

4

5 int temperature;

6 int time;

7 cin >> temperature >> time;

8

9 if (temperature < 40)

10 {

11 if (time > 9)

12 {

13 cout << "The park is open, go play!" << endl;

14 }

15 else

16 {

17 cout << "Wait until 9 when the park opens." << endl;

18 }

19 }

20 else

21 {

22 cout << "Too cold to play outside." << endl;

23 }

24 }

Program fragment 3.4

Incidentally, the notion of blocks as “boxes containing instructions” is not just
marked by the curly brackets, but also by visual indentation. Human readers of
your programs—including yourself—will find it much easier to see those invisible
boxes if the “contents” of each box are indented a little more than the stuff out-
side the box. Good program editors will help you with this, but try to develop the
habit yourself as well, when writing programs on paper or on the whiteboard. The
compiler might treat this as the same program as the previous one:
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1 int main()

2 {

3 cout << "Type the temperature and the current hour:" << endl;

4

5 int temperature;

6 int time;

7 cin >> temperature >> time;

8

9 if (temperature < 40)

10 {

11 if (time > 9)

12 {

13 cout << "The park is open, go play!" << endl;

14 }

15 else

16 {

17 cout << "Wait until 9 when the park opens." << endl;

18 }

19 }

20 else

21 {

22 cout << "Too cold to play outside." << endl;

23 }

24 }

Program fragment 3.5

but it’s much, much, much harder for a human to read. Practicing making your
indentation match your intent will help you in developing the mental models of how
your programs are structured, which in turn will help you write better and more
complex programs.
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The examples in this book so far have been exact programs or program fragments
to type in and work with, written in valid C++ (or intentionally demonstrating
C++ errors!). But when you are drafting your own program, it’s usually hard to
jump directly to the final product, and so we instead make use of the concept of
pseudocode. pseudocode

First, let’s define some other terms. A program is a complete sequence of instructions program
for a computer to do something (at least, once you get it working). It’s written in a
programming languege like C++, and it gets automatically translated (by the com-
piler) into some underlying machine language in order to actually be executed. We
sometimes work with smaller pieces of programs, which we can refer to as program
fragments or, commonly, code. Code, in this sense, is a mass noun (we don’t talk code
about “codes” or “a code”), but it’s related to other meanings of the word “code”
in that it’s required to follow certain rules about how to write it if you want it to
correctly be translated as intended. Once it is correctly written, code is precise and
unambiguous, and requires no direct human thinking in order to determine exactly
what it means or does.

This provides us with a contrast to what is widely called pseudocode. The prefix pseudocode
“pseudo-” indicates it’s related to and similar to “code”, but isn’t quite all the way
there. It has no formal grammar or syntax—informally, it often looks a bit like
code, but to highly varying degrees. Pseudocode is used in two main situations:

� when planning or first-drafting a program, to avoid having to focus on fussy
details of code syntax

� when communicating an algorithm strictly to other humans, to keep the focus
on the interesting parts and not the syntax

Crucially, the point is to shift focus away from the xyntax details. THat’s useful
when you’re first learning a programming language and don’t deeply know all the

21
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details yet, but it remains useful, and computer scientists at all levels will, at least
sometimes, plan and communicate using pseudocode.

What does it look like? That’s largely up to you. Consider this program that we’ve
already seen:

1 // Demonstrating if without else

2 #include <iostream>

3 using namespace std;

4

5 int main()

6 {

7 string name;

8 cin >> name;

9

10 if (name == "Nobody")

11 {

12 cout << "That's an unusual name." << endl;

13 }

14

15 cout << "Hello, " << name << endl;

16 return 0;

17 }

Program fragment 3.6

Almost any pseudocode will strip out repetitive pieces that are “always there” unless
particularly relevant; and might omit some things like variable declarations or semi-
colons (or might include them out of habit). This would be one valid pseudocode
representation of that program (shown in computer font because it’s staying sort of
close to C++):
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1 cin >> name;

2

3 if name = "Nobody"

4 {

5 cout << "That's an unusual name." << endl

6 }

7

8 cout "Hello, " << name << endl;

Program fragment 3.7

As C++ code, this would have a number of notable errors in it, but as pseudocode
it’s absolutely valid—and can be a useful first step to writing the program “for real”.

At the other end of the spectrum, pseudocode can be lightly formatted English
text, one step up from a paragraph description. Here is the same program in a more
English-y pseudocode:

read name
if the name is ‘Nobody’:

print that it’s unusual
print a greeting using name

Figure 3.7

Even in near-English, we use line breaks and indentation and words like “if” and
“else” in pseudocode to maintain some precision about the algorithm, but to most
human readers, the above would be a clear and unambiguous specification of the
algorithm that is encoded by the program we wrote above.

Comments

Pseudocode is useful for early drafts of programs, or for communicating algorithmic
ideas to other humans, but it’s entirely separate from the actual program.

Isn’t it?

Well, it doesn’t have to be. Sometimes there are ideas about the program, in
addition to those directly encoded into C++, that you want to convey to other
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human readers of the program. They could be additional C++ statements that you
are thinking about adding, or that were previously in the program; or maybe they
could just be English narrative about what you’re planning or why you made some
programming choice. Every programming language has some mechanism, generally
called “comments”, that lets you add stuff to the program file that you don’t intend
for the computer to read.

In fact, you’ve already seen them. In every listing so far of an entire program, the
first line has been a brief description of the program, starting with two slashes:

1 // First "hello world" program

2 // Doing a little arithmetic

3 // Program with input and output

4 // Demonstrating if and else

5 // Demonstrating if without else

Program fragment 3.8: Examples of first-line descriptions

In fact any line that you write that begins with two slashes will be completely
ignored by the compiler, so that you can safely write notes to yourself and other
humans there. It’s always a good idea to make the first line of a program a brief
description like this, but you can also use it elsewhere in your program.

If you put the double slash anywhere in a line, the compiler will read the first part of
the line and ignore the rest, which makes it convenient for leaving notes specifically
about that line:

1 if (name == "Nobody") // special case name

2 {

3 cout << "That's an unusual name." << endl;

4 }

Program fragment 3.9

When you type comments into a program editor, they’re often changed to a fainter
color, and sometimes a different font, to help indicate that they are not one of the
runnable parts of the program.
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In this chapter we’ll explore expressions, which are ways of combining variables expressions
and/or literal values into increasingly complex computations. The word “expres-
sion” in this sense has the same meaning as it does in mathematics, and much of
the content here might be review for you, especially if you’ve worked with spread-
sheets or graphing calculators. Make sure to read carefully, though, because some
of it is likely to be new!

4.1 Variables and values

We’ve already seen variables, as a way to read in values from the user and write variables
algorithms to abstractly refer to those values, whatever they might be. It is worth
reiterating here that while we may informally treat a variable as a name for a specific
value, a better mental model is that the variable is a named container, which values
can be placed in. Accessing the variable (in a cout statement or other expression)
gives us access to the value it contains.

One reason this is important is that declaring a variable only sets up that container,
but doesn’t actually provide it with a value. In the brief fragment

1 int age;

2 cin >> age;

Program fragment 4.1

the first of the two lines only declares the variable, with contents unspecified and
unknown, as on the left in this diagram:

25
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Figure 4.1: A newly declared variable, and a variable with a value

and then after the second line, the variable contains a value such as 19, as on
the right. Notice that the diagram indicates the “contents” of the newly-declared
variable as ??? : there’s something there, but we don’t know what it is. It might be
0, it might be 19, it might be some arbitrary number in the millions. C++ makes
no guarantees about what it will be—which is why it’s important to put a definite
value in the variable as soon as possible after declaring it.

4.1.1 Naming values directly

Sometimes it is useful to attach a name to values other than those read from the
user, and variables will be used in these cases as well; and since we won’t have to
wait for the input from cin, we can assign a value on the very line that we declare
the variable, using = as follows: =

1 string sentence = "This is a longer sentence, with spaces in it.";

2 int quarts_per_gallon = 4;

Program fragment 4.2

This syntax is sometimes called the declare-and-init pattern, because in addition to declare-and-init
declaring the variable, it also provides the initial value to go in the box. (It’s an
“initial” value because, eventually, we’ll see how and why you might want to change
them later on. But for now we’ll leave them unchanged from that initial value.)

Recall that when we were comparing values for equality, we used a symbol comprised
of two equals signs “==”; that usage is in contrast with this one for a single equals
sign “=”, immediately assigning a value to the variable when it is declared. Use
double equals to ask about a value, and single equals to make it be the value.

4.2 Order of operations

In an expression like
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2 + 3× 4

we might plausibly imagine two ways to evaluate it: first add to get 5, then multiply
by 4 to get 20; or, first multiply to get 12, then add to 2 to get 14. To make
expressions like this unambiguous—in this case preferring the latter interpretation,
yielding 14—mathematicians have long agreed on a standard order of operations, order of operations
which you may have learned under the acronym “PEMDAS”:

P parentheses
E exponents

MD multiplication and division
AS addition and subtraction

Figure 4.2: The classic order-of-operations table

This same set of rules, expanded a little bit, holds true in programming languages
as well. Note that the above table puts M and D on the same line, and A and S
as well; for operations in the same level of the table, we proceed left-to-right in the
expression. So for an expression like

1÷ 2× 4− 3 + 5× 6

we do all the multiplying and dividing in a left-to-right pass (not necessarily with
multiplication first):

1÷ 2︸ ︷︷ ︸× 4− 3 + 5× 6

1

2
× 4︸ ︷︷ ︸− 3 + 5× 6

2− 3 + 5× 6︸ ︷︷ ︸
2− 3 + 30

and then all the adding and subtracting, also left-to-right (not necessarily with
addition first):

2− 3︸ ︷︷ ︸+ 30

−1 + 30︸ ︷︷ ︸
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In a program, you’re not likely to have lengthy expressions with only literal values
(though it’s permitted)—typically you’ll have at least some variables. The standard
order of operations still applies, so multiplication and division (written * and /

respectively) happen before addition and subtraction:

1 cout << "Result: " << 100 - 3 * depth + 2 << endl;

Program fragment 4.3

Here the value of depth would be multiplied by 3, then that would be subtracted
from 100, and finally 2 added to the result before printing it to cout. If you want
the addition to happen before the subtraction, you can always force that to happen
using parentheses:

1 cout << "Result: " << 100 - (3 * depth + 2) << endl;

Program fragment 4.4

As expressions get more complicated, it can also be sometimes useful (in addition
to or instead of parentheses) to use variables to name some intermediate value in
the computation, both to make the computation itself clearer and perhaps to give
it some context for a human to understand:

1 double adjusted_depth = 3 * depth + 2;

2 cout << "Result: " << 100 - adjusted_depth << endl;

Program fragment 4.5

4.2.1 Warning: no exponent operator

Perhaps surprisingly, C++ does not have an operator to raise numbers to another
power. Perhaps more surprisingly, it does have an operator represented by the caret
( >) character, but it does something completely different. If you try
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cout << (5 > 2) << endl; // This is NOT an exponent

you’ll find that the result is 7 rather than 25. So it’s valid C++, it compiles, it runs,
and it does something unrelated.1 If you know the caret as an exponent operator
from somewhere else, be careful not to use it in C++!

4.3 Division, integer and real

Quick quiz: what’s three divided by two?

If you said “one and a half” (or three halves, or 1.5, or anything in that vein),
congratulations, you are thinking about division like basically everyone else. But in
many programming languages, including C++, there’s a little more to the story.

Think back for a moment to when you first learned about division, before you knew
about fractions or decimals. Perhaps you learned to write out long division following
a pattern like this:

or perhaps your technique was different, but look at that top line for a moment.
Presented with a division problem that didn’t have an exact whole-number solution
(7 × 16 is 112, so 115 ÷ 7 won’t divide an exact number of times), we give the
answer in two parts: the whole-number quotient (here 16), and the remainder (here
3). This style of division is called integer division, and is important enough to integer division
many computational problems that programming languages provide it as an option,
distinct from real division (or real-number division), which produces a single result real division
that might be fractional.

Here’s how it works in C++ and many related languages: if the expressions on both
sides of the division operator (/) are of the int type, C++ will perform integer
division and the result will be just the whole-number quotient. If either or both of
the expressions are of the double type, it will perform real division and the result
will be a double.

The easiest way to force real division, if that’s what you want, is to use a double

variable in the computation, or to explicitly add a “point zero” after a literal number,

1The operation it’s performing is called “bitwise XOR”, which is rather outside the scope of this
course.
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or to multiply something by 1.0, all of which ensure that part of the computation
is a double. Type in the following expressions and see what they do:

1 cout << 13 / 4 << endl;

2 cout << 13.0 / 4 << endl;

3 cout << 13 / 4.0 << endl;

4

5 int first;

6 cin >> first;

7

8 cout << first / 4 << endl;

9 cout << first / 4.0 << endl;

10 cout << first * 1.0 / 4 << endl;

11

12 double second;

13 cin >> second;

14

15 cout << second / 4 << endl;

Program fragment 4.6

On the other hand, if what you want actually is integer division, you probably also
want a way to get the remainder. This is provided with an operator variously called
remainder or modulus (or just mod), and represented with a percent sign (%). It remainder

modulus

%

has nothing in particular to do with percentages, it’s just a convenient symbol on
the keyboard that looks a little bit like the division sign. Using integer division with
remainders is useful to identify digits of a number, for dividing items into sets while
keeping track of leftovers, and for asking whether numbers are evenly divisible by
each other.
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1 int number;

2 cin >> number;

3

4 cout << number / 10 << endl;

5 cout << number % 10 << endl;

6

7 if (number % 2 == 0)

8 {

9 cout << number << " is even" << endl;

10 }

Program fragment 4.7

4.3.1 Warning: double values are approximate

When you write expressions that produce double values, you should be aware that
waht is stored in the system is not necessarily an exact number, but might be an
approximation. Similar to how 0.33333 is not exactly 1

3 , the result of real division (or
other kinds of computation with double values) will often be very close to, but not
exactly the mathemetically expected answer. For many purposes it’s close enough,
and when the results are printed out, C++ will try to present them in a way that
hides any inexact approximations.

The main place you need to watch out for is if two double values are being tested
for equality. Try typing in the following program fragment:
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1 cout << 10000.0 / 6 << endl;

2 cout << 10000.0 / 6 * 6 << endl;

3 cout << 1.0 / 6 * 10000 << endl;

4 cout << 1.0 / 6 * 10000 * 6 << endl;

5

6 if ( 10000.0 / 6 == 1.0 / 6 * 10000 )

7 {

8 cout << "Exactly equal" << endl;

9 }

10 else

11 {

12 cout << "Not the same" << endl;

13 }

Program fragment 4.8

The first four statements play out as you might expect: the expressions 10000.0 /

6 and 1.0 / 6 * 10000 appear to both evaluate to the same number, and when
you multiply each one by 6 you get the original 10000 back. Nevertheless, at least
on most systems, the conditional statement will print that the two values are not
the same, because the internal representations got rounded slightly differently.

The lesson here: if you will need to test equality with ==, try to figure out how to
do the computation with only integers; and if you must use double computations,
try to avoid exact equality testing, or you might get some unexpected results.

4.4 Functions (and library headers)

There are a handful of mathematical functions that are not associated with an
operator (such as logarithms or trigonometric functions, or just rounding to the
nearest integer), or whose operator doesn’t show up on a standard keyboard (such as
square root, often written

√
). For these, we’ll use mathematical function notation, function

with the name of the function followed by the value it’s operating on, in parentheses.
For instance,

1 cout << cos(0) << round(3.75) << sqrt(2) << endl;

Program fragment 4.9
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But there’s one more thing we have to do first, before it will compile and run. C++

comes with a lot of tools provided in its standard library , including mathematical standard library
operations and functions, but we have to tell the compiler that we’ll be using the
math parts of the library by including a library header at the top of the program. library header
We’ve already seen one library header, <iostream>, which indicates we’ll be do-
ing input and output (“I/O”); to use the math functions, we have to also include
<cmath>. This is a short but complete program that uses several of them:

1 // Demonstrating various math functions

2 #include <iostream>

3 #include <cmath>

4 using namespace std;

5

6 int main()

7 {

8 cout << cos(0) << round(3.75) << sqrt(2) << endl;

9 cout << floor(3.75) << log(100) << pow(5,2) << endl;

10

11 return 0;

12 }

Program fragment 4.10

These are some of the functions provided in the <cmath> header that might come
in handy at some point:

sqrt Square root
pow Exponent (compute xy)
round Round to nearest integer

floor, ceil Compute floor or ceiling (round down, round up)
sin, cos, tan Trig functions sine, cosine, tangent
log, log10 Logarithms (ln, log10)

Figure 4.3: Some useful <cmath> functions

Try using them with different values. What happens if you omit the <cmath> header
from the program?

Note that all of the provided mathematical functions work with double values, so
the warnings about approximate values apply here as well!
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Vectors (take 1)
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One of the most important programming concepts is that of the “collection”—a way
for a single value to contain multiple other values. Eventually, you will run across
other kinds of collection in C++, but our first will be collections that act like lists,
which in C++ will be called vectors. vectors

The two central facts about lists in general, and specifically about the vector types
in C++, are that

� they can hold multiple things, with no theoretical maximum size, and

� we can go through them in order.

That is, it may be that we only have five or 42 things in a particular vector, but
there’s nothing about the concept of a vector that prevents us from having five
hundred or five billion elements, depending on what our data happens to look like.
And when we process those elements, we can meaningfully think about the “first
thing” or “seventh thing” and can predictably and repeatably process them in order.

5.1 Making a vector

For now, we’ll restrict ourselves to making vector values directly in the declare-
and-init format. (We’ll see other ways to process them, including reading them in
from the user, in a few more chapters.) In the same way that we can declare-and-init
a variable of one of the simpler types, e.g.

34
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1 string drink = "coffee";

Program fragment 5.1

we can declare a vector-type variable and give its initial value:

1 vector<string> drinks = { "coffee", "tea", "water", "soda" };

Program fragment 5.2

The syntax of both these lines is exactly the same: first the type of the variable,
then the variable name, a single equal sign, and the value used to init the variable.
Similarly:

1 vector<int> lengths = { 3, 72, 5, 1, 5, 54, 3, 28, 154 };

2 vector<double> weights = { 4.0, 5.8, 2.75, 3.1, 12.5 };

Program fragment 5.3

The statement can run to multiple lines if it needs to (just like any other statement):

1 vector<string> rainbow = { "red", "orange", "yellow",

2 "green", "blue", "indigo", "violet" };

Program fragment 5.4

And the value need not contain any elements at all!

1 vector<string> zeroWords = { };

2 vector<int> noNums = { };

Program fragment 5.5

Lists can be empty, after all.
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5.1.1 Required header

Vectors are standard in C++, but you need to explicitly tell the compiler you’ll be
using them. At the top of your program file, add the line

#include <vector>

in addition to any other #include lines that you may have up there, in any program
where you’ll be using vectors.

5.1.2 What’s the deal with the <stuff> after the word vector?

Previously, we’ve seen types like int or string, which are complete and entire types
by themselves. An int is an int, representing an integer value within a defined range
and represented by a particular number of bits. But as we’ve already seen, saying
a value is a vector doesn’t fully specify its type, because there is also a question
about the type of the contents of the collection. A vector... of what?

We say as a result that vector is not quite a complete type, but rather a type
template or a templated type, which requires a template argument to identify the type template

templated type

template argument

type of the contents. The details of this are not important right now, just remember:
when declaring a vector variable, always follow the word vector with the type of
the contents, in angle brackets,1 as shown above. When reading code out loud or
otherwise speaking about them, we read the content type with the word “of”, so
that vector<int> is read as “vector of int”, and so on.

Omitting the content type may not always be a problem. In some cases, the type
of the contents might be obvious:

1 vector nums = { 3, -1, 0, 42, 7 }; // Error?

Program fragment 5.6

Indeed, since the C++17 standard, the above line would not give an error message,
or even a warning, correctly inferring that the content type must be int since all of
the contained values are ints. (Compilers on older standards would give an error
about a missing template argument.) However, even on a current compiler it’s a
good idea to habitually provide the content type:

1We use the term “angle brackets” here because they’re enclosing something much like square
brackets or curly brackets might, but on the keyboard they’re exactly the same as the less-than
and greater-than signs.
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1 vector<int> nums = { 3, -1, 0, 42, 7 }; // Better

Program fragment 5.7

Because sometimes the type can’t be inferred, even on a modern compiler:

1 vector empty = { }; // ERROR: no way to infer content type

Program fragment 5.8

And the inference system can’t read our minds—this might be intended as a vector<double>
but some of the contents are int literals:

1 vector moreNums = { 5, 7.3, 9 }; // ERROR

Program fragment 5.9

But if we are explicit it works fine:

1 vector<double> moreNums = { 5, 7.3, 9 }; // Works as expected

Program fragment 5.10

In no situation does C++ permit us to mix-and-match the types of elements in a
vector:

1 vector<???> mixed = { 3, 2.5, "Eli", 23, "Audra" }; // ERROR

Program fragment 5.11

In this sense, C++ vectors are said to be homogeneous, i.e. all the contents in any homogeneous
particular vector must be of the same type.
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5.1.3 Review

1. Write a declare-and-init statement for a vector containing the names of the
people that live in your apartment or suite or house.

2. Write a declare-and-init statement for a vector containing the ages of the
members of your immediate family.

5.2 Processing its contents: loops

In real life, when we are giving someone simple instructions about processing a list,
we might typically do so using the word “each” to stand in for each value in turn:

Buy each of the items on this list.

Read out loud each of the names on the list.

Figure 5.1: Simple instructions

If the instructions for what to do with each item are more complex, we typically put
the “each” first and refer back with the pronoun “it” (sometimes with additional
logic):

With each of the words on this word list,
write it down and
say it out loud.

For each of the items on this grocery list,
check our pantry for it and
if we are out of it,

buy it at the store.

Figure 5.2: Complex instructions

This kind of pattern in natural language points the way to how we formalise pro-
cessing lists of stuff in programming languages. The main difference is that a word
like “it” works well for humans who have a lot of context (and can ask questions
to clarify misunderstanding), but in a programming language we would like to be
more precise by introducing a variable name for the “it” we’ll be referring to in
the instruction. And, since C++ doesn’t want us to introduce new variable names
without giving them a type, we will specify the type of the variable. Thus:
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1 vector<string> words = { "correct", "horse", "battery", "staple" };

2 for (string word : words)

3 {

4 cout << word << endl;

5 }

Program fragment 5.12

Here, the actual repetition instruction might be paraphrased as “for each word in
the word list, print it out.” Indeed, when we do read it out loud, we would typically
actually begin, “for each string word in words...”. Though the word “each” is not
explicitly written in the C++, this kind of repetition is widely known as a for-each
loop. The loop header , which is the line with the for on it, declares a local variable for-each loop

loop header
that will first name the first value in the list (and execute all the instructions in the
block), then it will name the second value in the list (and execute all the instructions
in the block), and so on. The type of this loop control variable should be the same loop control variable
as the type of the contents of the vector.

Here is another example of a for-each loop, which in this case prints out each element
of the vector along with its square:

1 vector<int> nums = { 3, 0, -2, 5, 11 };

2 for (int n : nums)

3 {

4 cout << n << " " << n*n << endl;

5 }

Program fragment 5.13

Its output would be:

3 9

0 0

-2 4

5 25

11 121

Just as with if and else statements, the for controls the entire block that immedi-
ately follows it, which can contain multiple statements. The statements it contains
can themselves be if and else statements, which by convention we indent a little
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further to help show that they are “inside” the block:

1 vector<int> nums = { 3, 1, 15, 5, 11 };

2 cout << "Only bigger than ten:" << endl;

3 for (int n : nums)

4 {

5 if (n > 10)

6 {

7 cout << n << endl;

8 }

9 }

Program fragment 5.14

5.2.1 Review

1. Make a vector of the names of the towns you and your friends live in, and a
for-each loop that prints them all out.

2. What would be the output of this program fragment?

1 vector<double> temps = { 0, 20, 25, -40 };

2 for (double ctemp : temps)

3 {

4 cout << ctemp << " " << ctemp * 9 / 5 + 32 << endl;

5 }

Program fragment 5.15

5.3 A few more problems

1. Write a program that has a vector variable with many int values in it, and
then two loops: the first prints all the negative numbers in the vector, and
the second prints all the positive numbers. (Hint: remember that blocks can
contain any other statements, including other control statements!)
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We’ve been using strings for some time now, but in this chapter we’ll dive a little
deeper into how they work; and strings will provide a mechanism and motivation to
explore the concept of methods, and revisit loops.

6.1 Characters and sequences of characters

We have hitherto treated a string as arbitrary blob of text, whether provided as a string
string literal in the program or typed in by the user, but a more detailed definition is
that a string is a sequence of characters. A character is, generally, a single element character
that you can type with a keyboard, such as a letter, or a space, or punctuation;
you might know the term from character limits on some social media platforms or
communication systems. Some characters are a little harder to type on a standard
American English keyboard, such as accented letters, foreign currency symbols,
letters and characters from other writing systems, and even emoji, but they do also
count as characters and can be part of the contents of a string. In modern C++,
characters that are “outside ASCII”1 will most often be handled using an encoding
called UTF-8, and should work ok with a few caveats:

� If you use non-ASCII characters in string literals, you need to precede the
double-quote with “u8”, as in: u8"¡Holá!"

� Not all compilers support non-ASCII in variable names

1The American Standard Code for Information Interchange, standardised in the 1960s, by Amer-
icans, which is essentially “exactly the characters you could type on a standard American type-
writer”, which makes it adequate for specifically American English communication but somewhat
limiting if you’re doing anything else.

41
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� Anything the user types can be stored and printed back out correctly with no
special work, but

� Strings that include non-ASCII will generally over-count the number of char-
acters they contain unless you do a little extra work

The type char is provided for storing individual characters, and for historic reasons
it is essentially defined as exactly one byte, eight bits, and thus in practice a single
char value can only represent an entire character if that character is part of ASCII.
Non-ASCII characters are representable in strings by a sequence of multiple char

values.

So, variables and values of type char in C++ aren’t quite the same thing as a
“character” in modern global usage. That said, it’s close enough, for people working
primarily in English, that in an introductory context it’s a lot easier to say “a char

is a character” and defer the complexity to later. Examples in the rest of this book
will generally stick to ASCII, but other than the character count possibly being off,
if you want to write or test your code with non-ASCII characters, go for it!

6.2 Methods

We have already seen two ways that C++ provides for us to indicate how to perform
a computation: operators, and functions. As a matter of syntax, operators are
represented with punctuation symbols like / or +, and have two operands to say
what to perform the operation on;2 and functions are represented with names and
followed with parentheses that contain some number of parameters (separated by
commas if there’s more than one). For both operators and functions, the data they
work with (operands and parameters) can be either literal data, named variables,
or more complex expressions. This diagram reflects that:

2Technically, only some operators have exactly two operands (the “binary” operators), and we’ll
see others later. But for now, exactly two operands.
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Figure 6.1: Operators and function call syntax

Here we will see the third way that C++ lets us indicate a computation to perform,
and it’s a bit of a hybrid of the other two. A method call, like an operator, is method
written with something on the left side and something on the right side to indicate
the data it will work with, and the computation itself is indicated by the part in the
middle. Like a function call, the computation is given a name (preceded by a dot to
make it a method call) and the parameter list to its right is always surrounded by
parentheses, which must be present even if there are zero parameters. This diagram
illustrates three method calls:

Figure 6.2: Method call syntax

For now, all the method calls we’ll see are designed to operate on string objects.
The object of a method call can in general be any expression of the appropriate
type, but for reasons we’ll discuss in a later chapter, methods won’t work directly
on string literals:

"This won't work, sorry".length()

so for now we’ll only make method calls directly on string variables. The parameters
can, as with function calls, be literals, variables, or complex expressions, as long as
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they are of the correct type.

The diagram above illustrates the three string methods that we’ll be using for now:

.length gives the number of characters in this entire string (and requires no pa-
rameters, but you can’t skip the parentheses)

.substr extracts a substring beginning at a given point in this string and extending substring
for a given number of characters

.at extracts a single character at a given location in this string

To see in more detail how they work, type in the following program fragment, try
to predict how it would work on the word “howdy”, and then run it and see what
it does:

1 cout << "Type a word at least five characters long:" << endl;

2 string word;

3 cin >> word;

4

5 cout << word.length() << endl;

6 cout << word.substr(1,3) << endl;

7 cout << word.at(4) << endl;

Program fragment 6.1

Saying that the length of the string was 5 was probably not surprising, but you
might not have expected the other two answers:

5

owd

y

The reason for this behaviour has to do with zero-based indexing, which is standard
in C++ and nearly every other modern programming language.

6.2.1 Zero-based indexing

In the string "howdy", there are five characters. We can model the string as a
sequence of five cells, each containing a single char value, as follows:
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Figure 6.3: A five-character string

Each of those cells is labelled with a number, or index (plural “indices” or “indexes”— index
both are correct and in common use!), that can be used to pinpoint the location of
that cell in the string.

When a language uses zero-based indexing , the index of a character is answering the zero-based indexing
question “how far from the start of the string is this position?”. In this string, ‘h’,
the first character, is at the start of the string, a distance of zero, so its index is 0.
The next letter, ‘o’, is one step away from the start, so its index is 1.

So in the test program, the line

1 cout << word.substr(1,3) << endl;

Program fragment 6.2

is asking for the portion of word that starts at index 1 and continues for 3 more
characters, thus printing “owd”. Continuing to the next instruction,

1 cout << word.at(4) << endl;

Program fragment 6.3

is asking for the character at index 4, which in this case is ‘y’.

Armed with this knowledge, experiment a little bit with the program:

� Try other five-letter words: predict the output, then run the program and see
if your predictions are correct.

� What about longer words?

� What do you expect would happen if you typed a shorter word? Try it and
see what it does.

� Change some of the numbers in the .substr and .at method calls, and then
run the program with different words as its input. Are you able to predict the
output before you run it?
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6.3 Loops and individual char values

Understanding strings as a sequence of separate characters also gives us the abil-
ity to process the characters one-by-one. In this sense, a string is similar to a
vector<char>; although the vector can’t be as easily processed with cin and cout,
we can write an identical for loop for either one:

1 string word;

2 cin >> word;

3 for (char ch : word)

4 {

5 cout << ch << endl;

6 }

Program fragment 6.4

Most interesting loops involving strings will want to ask questions about each char-
acter and behave conditioned on that. For now, we can ask whether the character
is exactly some specific character, using ==, or whether it belongs to some group of
characters, using provided functions.

6.3.1 Comparing to char literals

Just as we had string literals earlier, indicated by double quotes, we can also repre-
sent char literals using single quotes. Any printable ASCII character is represented char literals
by typing that character between a pair of single quotes. We can use == (and
eventually other tools) to compare them:
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1 cout << "Replacing underscores with spaces:" << endl;

2 for (char ch : sentence)

3 {

4 if (ch == '_')

5 {

6 cout << ' ';

7 }

8 else

9 {

10 cout << ch;

11 }

12 }

13 cout << endl;

Program fragment 6.5

6.3.2 Functions on char values

We’ve previously seen math functions like sin and round, that process numbers into
other numbers. Another category of function answers questions about values and
can be used in if statements.
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1 // Filtering only the lowercase letters in a word

2 #include <iostream>

3 #include <cctype>

4 using namespace std;

5

6 int main()

7 {

8 string word;

9 cin >> word;

10

11 cout << "Only the lowercase letters:" << endl;

12 for (char ch : word)

13 {

14 if (islower(ch))

15 {

16 cout << ch << endl;

17 }

18 }

19 return 0;

20 }

Program fragment 6.6

Functions that are usable in this way in if statements often have names begin-
ning with “is”, and several of them are provded in the <cctype> library header,
including:

isalpha is the character alphabetic?
islower is the character a lowercase letter?
isupper is the character an uppercase letter?
isdigit is the character a digit from 0–9?
ispunct is the character a punctuation character?

Figure 6.4: Some functions in <cctype> to check characters

There are also a couple functions (also in <cctype>) that help you to convert case:

toupper produce the character code for uppercase of given letter
tolower produce the character code for lowercase of given letter

Figure 6.5: Some functions in <cctype> to transform characters
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so you can, for instance, all-caps a word:

1 for (char ch : word)

2 {

3 char ch_up = toupper(ch);

4 cout << ch_up;

5 }

6 cout << endl;

Program fragment 6.7

6.3.3 Warning: toupper produces a number

It might seem that the more obvious way to write that last program fragment would
be

1 for (char ch : word)

2 {

3 cout << toupper(ch);

4 }

5 cout << endl;

Program fragment 6.8

but if you do that (try it!) you’ll see that it prints out a lot of numbers instead. For
some inconvenient historic reasons, toupper and tolower technically produce int

rather than char values, and if you print them directly you get those int values. If
you store them in a char first, though, they’ll get converted back into the character
values you would otherwise be expecting.

This trick also lets us do some other nifty things; lightweight math (adding or
subtracting small numbers) done on a char value produces an int value that can be
converted back to char the same way as before. Try to figure out what this program
is doing:
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1 cout << "Type a word:" << endl;

2 string word;

3 cin >> word;

4 for (char letter: word)

5 {

6 char result = letter + 1;

7 cout << result;

8 }

9 cout << endl;

Program fragment 6.9

Are there any cases it doesn’t handle nicely? How might you fix it to handle those
cases?



Chapter 7

Variables that vary
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In this chapter we’ll see why “variables” are called that, and introduce the accumu-
lator pattern, a powerful way to use loops to process data.

7.1 Assignment and update statements

Thus far, we have only seen programs where a variable’s value never changes (at
least, not until you run the program a second time with different input). Here we
will see two ways that you can change the value of a variable during the runtime of
a program.

Back in Chapter 4, we first saw the use of the = operator in what we called a “declare-
and-init” statement, immediately assigning a value to a variable rather than reading
its value from the user:

1 int n = 5;

2 cout << n << endl;

Program fragment 7.1: Declare-and-init

The same operator can be used in a simple assignment statement: any variable assignment
name, a single =, and then any simple value or other expression of a type that can
be assigned to that variable.

51
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1 int a = 5;

2 int b = 7;

3 cout << a << " " << b << endl;

4 a = b;

5 b = 13;

6 cout << a << " " << b << endl;

7 a = 25;

8 b = 2 * a + 7;

9 cout << a << " " << b << endl;

Program fragment 7.2: Assigning to a variable

Another way to change the value of the variable is to update its value relative
to its current value. These compound assignment statements, such as +=, are all compound assignment

+=
based on one of the arithmetic operators (in this case +), and instruct the computer
to evaluate whatever expression is on the right side of the assignment operator,
and then instead of replacing the original value of the variable, use the indicated
operation to combine the variable’s current value with the right-side result, and
store that as the new value of the variable.

1 int a = 23;

2 cout << a << endl;

3 a += 1;

4 cout << a << endl;

5 a -= 2;

6 cout << a << endl;

7 a += 18;

8 cout << a << endl;

Program fragment 7.3: Updating a variable with compound assignment

7.2 Accumulating values

Armed with your understanding of vector loops from Chapter 5 and your new knowl-
edge of assignment statements, you might be able to work out what this program
does:
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1 vector<int> numbers = { 3, -2, 0, 12, 4 };

2

3 int result = 0;

4 for (int num : numbers)

5 {

6 result += num;

7 }

8 cout << result << endl;

Program fragment 7.4

Type it in and confirm your understanding, and as usual, try modifying parts of the
program to see if they change its behaviour the way you expect.

This program is a short, simple example of the accumulator pattern that will spring accumulator
up for almost every interesting program we write to loop through a sequence (either
a vector or a string) and process its values. The accumulator itself is a variable that
accumulates relevant values, step by step, until at the end it has the final result
being computed. (Or at least, an intermediate result that will be further processed
later.)

Aside from the loop itself, there are three important parts to every accumulator
algorithm:

� Declare-and-init the accumulator variable, before the loop

� Update the accumulator, inside the loop (at least sometimes)

� Use the value of the accumulator, after the loop

Figure 7.1: The accumulator pattern checklist

For now, “using” the accumulator after the loop will often just be printing its value.
How (and when) to update the accumulator, and what its initial value should be,
will depend on the algorithm.
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7.3 A few standard loop-accumulator patterns

7.3.1 Sum, average, product, concatenate

One of the most fundamental accumulator patterns is the one that computes a sum,
which you have already seen in the last section, recapped here:

1 int result = 0;

2 for (int num : numbers)

3 {

4 result += num;

5 }

6 cout << result << endl;

Program fragment 7.5

Here, the operation used to update inside the loop is addition, because summing is
adding together a whole bunch of numbers, and that addition is performed every
single time through the loop in order to add all the numbers. The initial value of
the accumulator is the “sum” that you get when you haven’t seen anything yet, or
if the list is empty. (Not coincidentally, zero is the additive identity, the number
that you can add to things without changing them—accumulators that follow this
pattern will generally declare-and-init the variable with the identity of whatever
operator they use.)

The same general pattern is used for some other computations that are similar.

� To compute an average (mean) of a list of numbers, you add them up and
divide by how many of them there are. This will follow the sum pattern
exactly up to the “use” part: instead of printing the sum, it prints the average.
What should you divide by? How can you do that division correctly? Write
or modify a program to compute the average of a bunch of numbers.

� To compute the product of a list of numbers, you’ll be multiplying them instead
of adding. What number should you use to init the accumulator? Write or
modify a program to compute the product of a bunch of numbers.

� Concatenation is a term for combining multiple strings into a single string, Concatenation
and in C++ this operation also uses the + operator (although unlike some
other languages, both operands of + must already be strings and they can’t
both be string literals). How will you declare-and-init an accumulator for this
operation? Write or modify a program to compute the concatenation of a
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bunch of strings.

7.3.2 Count

Another broad category of accumulator algorithms are the counting algorithms: how
many elements of the vector match a specified condition?

1 int result = 0;

2 for (int num : numbers)

3 {

4 if (num > 100)

5 {

6 result += 1;

7 }

8 }

9 cout << result << endl;

Program fragment 7.6

Here the “update” part of the accumulator checklist is adding 1 to the accumulator,
but only sometimes. (If we added 1 for every single element in the vector, we’d just
get the length of the vector.)

� The values being counted don’t need to be numbers. Write or modify a pro-
gram that counts how many strings in a vector start with an uppercase letter.

� One variant of counting is the scoring accumulator, where instead of always
adding 1, some different amounts are added (or subtracted) based on different
properties of the value being considered. Write or modify a program that
scores a vector of words by awarding 3 points for every word over 5 characters
long and 1 point for every word shorter than that.

7.3.3 Max, min

Yet another pattern to be aware of is the max/min pattern, finding the largest or
smallest or longest or hottest or otherwise mostest element of a sequence.
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1 double highest = numbers.at(0); // The first element of the vector

2 for (double num : numbers)

3 {

4 if (num > highest)

5 {

6 highest = num;

7 }

8 }

9 cout << highest << endl;

Program fragment 7.7

The update is only sometimes, as with the counting loops, but the update is to
replace the result value rather than to add to it; the condition for the update asks
if the current number higher than the highest (so far), and if so, update that result.

The initial value is also interestingly different from the others we’ve seen. In the
previous sections we asked “what would the answer be if the list were empty?”, but
that’s not really a sensible question here. (What is the largest value in an empty
list?) On the other hand, the first element in the vector might not be the highest,
but it’s at least a valid comparison value, and if there’s a higher one later, we’ll find
it.

� The algorithm for finding the smallest number in a list is almost identical.
What change do you have to make to the algorithm find the minimum instead?
Write or modify a program to find the smallest of a bunch of numbers.

� The comparison operators < and > work on strings as well as numbers. They
work by comparing ASCII values, so things get a little complicated when the
strings are mixed case or involve numbers and punctuation, but if all the strings
being compared are the same case (all lowercase, or all uppercase), then you
can treat them as alphabetic comparisons. Write or modify a program to find
the alphabetically-earliest of a vector of lowercase words.

� Eventually we’ll see accumulator-loop situations where we don’t have the entire
vector of values in advance, so we can’t init the result with “the first value”.
If we know enough about the domain of the data (in particular, what are the
largest and smallest realistic values that could be in there), an alternative way
to init the accumulator is with a much-larger or much-smaller value. Write a
program that finds the highest age from a bunch of ages of users of a particular
website, without using a value from the vector as the initial value (i.e. choose
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an appropriate initial value). Modify the program, including the initial value,
to find the lowest of a bunch of ages of users of a particular wesbite.

7.3.4 Argmax, argmin

Sometimes what you want is not the max/min value itself, but the value in a sequence
that has the maximum or minimum value of some relevant property. For instance,
finding the longest string in a sequence:

1 string longestword = words.at(0);

2 for (string word : words)

3 {

4 if (word.length() > longestword.length())

5 {

6 longestword = word;

7 }

8 }

9 cout << longestword << endl;

Program fragment 7.8

This is arguably a subtype of the max/min pattern, but the difference is important
enough to be worth pointing out. An argmax algorithm is one that, rather than argmax
finding “the largest value”, instead finds “the value that maximises some specific
property” (here, the length of the string). That makes the comparison slightly
more complicated, though in a predictable way: both sides of the comparison have
something (here, the .length method) applied to them, and the result of that
is what is being compared. The actual update is identical to the base max/min
pattern.

7.4 Constants

One last note for the chapter about variables. All through this chapter we’ve been
seeing ways to usefully change the values of variables; but you might recall that we
sometimes want to name a value for clarity, but the value should never change:
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1 int quarts_per_gallon = 4; // is this actually going to change?

Program fragment 7.9

The number of quarts in a gallon won’t change! We call such values constants. It’s constants
useful to indicate that a variable is meant to be a constant, both for human readers
to understand the code, and also for the compiler to help make sure that you don’t
accidentally change the value. There are two keywords to do this in C++: const and const

constexpr. The difference between the two is subtle (having to do with whether constexpr
the value is “known at compile time”), but most named constants can be declared
constexpr, and if the compiler complains, try switching it to const. (If the compiler
still complains, and you’re sure it really shouldn’t be changing, double-check that
you aren’t actually changing it anywhere!) Thus we can say

1 constexpr int quarts_per_gallon = 4; // definitely never changing

Program fragment 7.10

and then use quarts per gallon anywhere we want to make that measurement con-
version, rather than having the unexplained number 4 floating around in our code.
They’re also nice to use when there’s a filtering or counting threshold somewhere:

1 constexpr int minimum_membership_age = 25;

2

3 int underage_count = 0;

4 for (int age : ages)

5 {

6 if (age < minimum_membership_age)

7 {

8 underage_count += 1;

9 }

10 }

11 cout << "Number of people too young to join: " << underage_count << endl;

Program fragment 7.11

Choosing a good name for the accumulator, and using a well-named constant, make
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programs like this much easier to read and understand.



Chapter 8

I/O revisited, and general loops
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In this chapter we’ll talk about more general forms of looping, and to illustrate and
motivate them we will explore some different common input patterns.

8.1 Reading data until it’s done

First, let’s look at a method of vectors that we haven’t seen yet. In previous sections,
when we used vectors, we created them with their full contents at the top of the
program, and then just made use of the (unchanging) values in the vector. With the
.push back method, which adds new elements to the vector after it’s been created, .push back

we can build vectors based on user input, and then process that data with the
standard loop patterns we’ve seen.

If the data will be read from the user, we can consider creating a vector with no
contents at all:

1 vector<int> numbers = {}; // created empty

2 numbers.push_back(3);

3 numbers.push_back(-7);

Program fragment 8.1: Simple use of .push back

This example isn’t yet very useful, but it points the way to a powerful pattern: if
we can read as much data as we need, then the same program, without recompiling,
can run with different data series every time it runs.

One more piece: expressions to read in data actually do two things. In addition

60
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to putting the input data into a variable, they produce the boolean value true if
they were successfully able to read. If not, they evaluate to false. That makes the
following pattern make sense:

1 vector<int> numbers = {};

2 int num;

3 while (cin >> num)

4 {

5 numbers.push_back(num);

6 }

7

8 int sum = 0;

9 for (int n : numbers)

10 {

11 sum += n;

12 }

13 cout << sum << endl;

Program fragment 8.2: Reading until we run out of input

Let’s deconstruct that: First, it creates the vector numbers, empty. It declares a
variable num that will be used to read in each number one at a time. The expres-
sion cin >> num here does double-duty, both reading in the value, once each time
through the loop, and controlling when the loop is done. Inside the loop, every
time a value is successfully read, it is added as an element of numbers using the
.push back method. Finally, a subsequent loop processes the data (in this case,
with a standard summing algorithm).

When you run the program, then, you need some way to signal that the input is
done. Some simplified environments dont’ support that, but if you are working in
a command-line environment or a full emulator of one, typically Ctrl-D on a line
by itself signals that there is no further input to be read, terminating the loop and
continuing on to whatever statements come after it.

� Try writing a program that reads all the words in the input, and then prints
how many of them were more than four letters long.

� Try writing a program that reads all the integers in the input, and then prints
all of them that are between 5 and 20.
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8.1.1 A few important vector methods

In Chapter 6 we saw a few useful methods that string values have, and then in
the last chapter we saw that .at also works on vectors. Here are a few other useful
vector methods

.at extracts a single value at a given location in this vector

.push back adds a given value to the end of the vector (modifying the vector!)

.size gives the number of elements in this entire vector (and requires no parame-
ters)

.back returns the last element of the vector (equivalent to using .at with the index
of the last element; but requires no parameters)

.pop back removes the last element from the vector (modifying the vector!)

8.2 while: general looping

So what exactly is while doing? We’ve previously seen a for loop that accessed while

each element of a vector or string in turn, but while is giving us something much
more general: it simply controls a block of code and specifies the conditions under
which the loop keeps running.

That’s actually a little backwards from how we usually do it. In instructions in-
tended for humans—cooking recipes, knitting patterns, assembly instructions—we
usually specify repetition with words like until, indicating when to stop, and if we’re
being formal, we talk about stopping conditions. But in C++ and virtually all other
programming languages, we use while instead of “until”, indicating a “keep-going
condition”. This makes the semantics of loops very similar to conditionals: test the
condition, and if it evaluates to true, do the stuff in the body of the statement. The
difference is that an if statement executes the body at most once, while the while

statement will evaluate its condition after every time the body runs, and as long as
the condition remains true, the loop keeps running. These flowcharts show the logic
of the two:
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Figure 8.1: An if statement and a while statement, side-by-side

In general, when building any while-based loop, the keep-going condition needs to
be something that will change over the life of the loop—eventually becoming false.
If it is a condition that is always true, the program will never terminate!

8.2.1 An exception: “sentinel” stopping conditions

The exception to that rule is that it’s possible to stop a loop in the middle, using a
break statement. When the loop is built to be stopped in the middle with a break break

statement, it can be ok to leave the loop condition unchanging, and indeed to always
have the loop condition be true—as long as we’re sure the stop condition will be
reached eventually.

A very common reason to use this is when an input loop is meant to stop as soon
as it sees a certain special sentinel value, as in the following program: sentinel
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1 vector<string> words;

2 string word;

3 while (true)

4 {

5 cin >> word;

6 if (word == "STOP")

7 {

8 break;

9 }

10 words.push_back(word);

11 }

12 // further processing after this point

Program fragment 8.3: Reading words until one is STOP

This pattern is sometimes referred to as loop and a half because only “half” of the loop and a half
loop executes on its last time through—it reads the input, and once it confirms that
it is the string "STOP", it skips to the statement after the loop, not executing the
push back statement. A flowchart for this pattern clearly shows the loop-and-a-half
structure:
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Figure 8.2

The dotted line and the quotes around the first “decision” show that the while
condition is always true and the loop never really ends there—the real loop control
is on the if statement that may decide to break out of the loop. Some stylebooks
advocate against the use of break statements, but especially when input is involved,
there are times when it makes the cleanest code—but only if the loop is a short one
(under ten lines or so). If the break statement is deep in the middle of a very long
loop, it makes it harder to read and reason about the program.

� Try writing a program that keeps reading numbers until one of them is nega-
tive, then printing the smallest of them (not including the negative).
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8.3 Other general loops

Although we’ve used data input as a motivation for needing a general while loop,
another broad category of loop is when the loop control is based primarily on num-
bers counting up (or counting down).

This program fragment is a simple but typical example of a loop involving neither
input nor an existing collection of data, but prints a message a number of times
based on the value of a variable n:

1 int i = 0;

2 while (i < n)

3 {

4 cout << "Hi!" << endl;

5 i += 1;

6 }

Program fragment 8.4

The variable i here represents something like “how many times has the loop run so
far?”—initially zero, and when it has run n times, we stop.

Just about any time we use a while loop, there is one variable in particualr that
changes its value over the lifetime of the loop and which is used to decide whether
the loop needs to keep running. This is often called the loop control variable (LCV). loop control variable

The following three-element list can serve as a checklist of sorts for most general
loops involving while:

� declare and init the LCV, or otherwise set it up, before the loop

� establish the keep-going condition, involving the LCV

� make progress on the variable, inside the loop (often at the bottom), always

Unlike in the accumulator checklist, where updating the accumulator might only
happen sometimes, the LCV needs to make progress, somehow, every single time
the loop runs. If it didn’t, then that would mean the next run of the loop would
be identical to the current one—still not making progress—and thus that the loop
would never terminate. The progress doesn’t have to be an increase; it could be
a decrease, or input from cin, or a change to the data being processed, or some
more subtle change of condition, as long as it gets closer to the keep-going condition
eventually being false.
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For example, this fragment takes a pre-existing string named phrase and prints it
out backwards:

1 int i = phrase.length() - 1;

2 while (i >= 0)

3 {

4 cout << phrase.at(i);

5 i -= 1;

6 }

7 cout << endl;

Program fragment 8.5

The loop control variable, i, gets an initial value before the loop starts, is tested
in the loop condition, and is updated on the last line of the loop—by decreasing it,
which brings it closer to 0.

� Try writing a program that reads two numbers from the user and then counts,
starting at the first number and stopping at the second.

� Try writing a program that reads a number from the user and then prints the
even integers up to that number (remember that the update doesn’t have to
go up by 1 each time).

8.4 do - while loops

The last of the loop constructs is the do-while loop, so named because it begins do-while

with the keyword do, and the while condition comes after the loop.

1 int i = 5;

2 do

3 {

4 cout << "Hi!" << endl;

5 i -= 1;

6 } while (i > 0);

Program fragment 8.6

For every time through the loop after the first, this is exactly equivalent to the other
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kind of while loop, since the condition is tested between the end of one repetition
and the start of the next. But by putting the test at the end,

� the loop always runs at least once, even if the condition is false to begin with
(because it’s not tested before the first trip through the block), and

� the loop condition can use a variable that does not get a value until sometime
during the loop.

The flow of the do-while loop is as shown below:

Figure 8.3

C++ and a number of other languages have some version of a do-while loop, with the
condition tested at the end. However, in practice, a loop-and-a-half design tends to
be more common and more useful.
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Functions
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For some time now, we’ve known how to call functions that are defined in the
libraries. In this chapter, we’ll see how to define our own.

9.1 Functions that accept and return one value

We’ve already seen functions like sqrt that process numbers, perhaps in a statement
such as this:

1 double side = sqrt(area);

Program fragment 9.1

Here, area is the function’s parameter , the value that the function will be operating parameter
on. Functions can have one or more parameters, or even zero parameters (we’ll
see those a bit later). The value produced by the function call is its return value; return value
imagine that the function call is sending an assistant out to figure out the answer,
and when the assistant returns they have the answer, to be used in the rest of the
computation.

Suppose we wish to write our own function halve that might be called as follows:

1 double result = halve(n);

Program fragment 9.2: Using halve

69
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The first line of our function will specify information about how the function will
interact with its parameters and return values; the rest will be a block with instruc-
tions on how to perform the computation. Halving a number is simple, so the full
definition is short:

1 double halve (int number)

2 {

3 return number / 2.0;

4 }

Program fragment 9.3: Defining halve

The first part of the first line designates the return type (here, double); then the return type
name of the function; and finally, in parentheses, the list of formal parameters with

formal parameters
both their type and their name. The block, sometimes referred to as the function
body , can have arbitrary C++ code in it, and can use the parameters by name as function body
variables. The function should contain (for now, always as the last line) a return
statement that evaluates an expression of the appropriate type to return. return statement

Functions need to be declared before they are used. Declaring is slightly different
than defining, but for now we’ll say that the function definition has to be earlier in
the .cpp file than any code that calls it. That gives us a plausible complete program
file such as the following:
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1 // Defining and using a function to halve integers

2 #include <iostream>

3 using namespace std;

4

5 double halve(int number)

6 {

7 return number / 2.0;

8 }

9

10 int main()

11 {

12 int n;

13 cin >> n;

14

15 cout << "Half of " << n << " is " << halve(n) << endl;

16

17 return 0;

18 }

Program fragment 9.4

Notice anything interesting about main? We’ve been defining our programs using
main since the very beginning without talking about what main really is. It’s a
function! When the operating system runs your program, what it’s really doing
is calling the main function, which has no parameters1 and which returns an int.
This is also why our sample programs have a return 0; as their last line. The
return value of main can be used to signal the operating system that something
went wrong. Because main is special, technically you can omit the return statement
from it, in general, but it’s a good practice to leave it in there.

� Try writing a function triple that computes triple the value of a given integer,
and use the function appropriately in the rest of the program.

� Try writing a function spaces that counts how many spaces are in a given
string, and use it appropriately. (What are its parameter and return types?)

1Strictly speaking, it could have parameters—these are called command-line parameters—but
we won’t be using that feature for now.
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9.2 Functions on vectors

The type of function parameters is not restricted to simple types like int and
string; it’s perfectly acceptable for vectors to be parameters. Many of the pro-
grams we’ve written in previous chapters, which work on vectors and print their
result, are adaptable into functions that perform the same computation and then
return it:

1 int count_high (vector<int> numbers)

2 {

3 int result = 0;

4 for (int num : numbers)

5 {

6 if (num > 100)

7 {

8 result += 1;

9 }

10 }

11 return result;

12 }

Program fragment 9.5

Indeed, the main difference, other than “return instead of printing”, is that return
statements can usefully occur somewhere other than the end of the function.

9.2.1 Early return

When a program is executing, the keyword return doesn’t only indicate what the
return value will be—it is also an instruction to return that value, immediately. If
it is not the last line of the function, all futher computation inside the function is
terminated.

To see why this might be useful, consider the function find first negative, which
is intended to return the first negative number in a vector, or zero if there aren’t
any:



CHAPTER 9. FUNCTIONS 73

1 double find_first_negative (vector<double> numbers)

2 {

3 for (double num : numbers)

4 {

5 if (num < 0)

6 {

7 return num;

8 }

9 }

10 return 0;

11 }

Program fragment 9.6

Let’s start at the bottom. Consider why that final return statement is necessary:
if there are no negative numbers in the vector (including the case where the vector
is empty!), the if is never true, so we’ll return zero. But we don’t want that
statement to execute if a negative number is actually found! Moreover, if we find
multiple negative numbers, we don’t want the later ones to interfere. Conveniently,
then, the return statement inside the loop will execute immediately when it finds a
match; and when it executes, it drops everything else on the floor and immediately
ends the function by returning the found value.

9.3 Functions and good design

Essentially everything we might want to write a function to do could be done without
a function. So why bother with them?

We’ve already seen how to use named intermediate values to make a computation
easier to design and easier to read: they encapsulate a small, well-defined piece encapsulate
of a computation so that the reader (and programmer) can better make sense of
them, and verify them. Functions are used in much the same way, with even more
separation of the different parts of a computation. Functions can confer this “named
value” benefit even on multi-line computations, perhaps involving conditionals or
loops or both.

Functions provide an additional important benefit to a well-designed program, too.
By making the program more modular—with distinct, well-defined parts—we make modular
those parts reusable. As your programs get more complex, if the same computation
is used in defferent parts of the program, it can be defined once in a function and
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called from wherever else in the program it’s needed. Indeed, the same function can
be kept and used again in other programs, if it’s sufficiently abstract or general-
purpose. The most important and reusable functions can get bundled into libraries, libraries
to be used by programmers elsewhere.

The shorter a function is, the more likely it is to be readable, testable, and reusable.
A good rule of thumb is that if a function—including main!—is longer than about
a dozen lines (maybe twenty or so if there’s a lot of input and output), you should
think about whether there’s some part of it that might make sense as a nameable
separate function.

9.3.1 Function order and headers

Since good design is tightly related to whether a program is legible to other program-
mers, it’s sometimes important to think about what order functions are presented in
the file. In our program example earlier, halve was defined first, then main. Some
programmers find it more communicative to put the high-level overview first and
then put the details, the helper functions, afterward. That would naturally lead to
a program like the following (some lines omitted):

1 // Defining and using a function to halve integers

2 #include <iostream>

3 using namespace std;

4

5 int main()

6 {

7 ... halve(n) ...

8 }

9

10 double halve(int number)

11 {

12 // ... detail omitted ...

13 }

Program fragment 9.7: Defining main first—compiler error

This means that as the compiler scans the file, when it gets to the line that refers
to halve, that function has not yet been defined, nor even mentioned—and the
C++ compiler will thus reject it. To get around this problem, and let programmers
arrange their programs in the order they find clearest, C++ lets us declare a function
before we define it, providing only the header of the function (also known as its header
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signature—the first line, before the open curly bracket, indicating the return type, signature
name, and parameters) in a sort of table-of-contents that lets the compiler know a
definition of that program is on its way. Function declarations can go at the top of
the file (or, eventually, in a separate file) before any of the functions are defined:

1 // Defining and using a function to halve integers

2 #include <iostream>

3 using namespace std;

4

5 // Function headers

6 double halve(int number);

7

8 // Function definitions

9 int main()

10 {

11 ... halve(n) ...

12 }

13

14 double halve(int number)

15 {

16 // ... detail omitted ...

17 }

Program fragment 9.8: Defining main first—fixed

It’s a good habit to always add all your function headers to the top of the program
file, even if the compiler isn’t insisting on it—again, for human readers, it provides
a sort of table-of-contents. But, be careful: if you have declared a function, and
call it, but never get around to defining it, the compiler will loudly reject it with
something called a linker error : linker error

/usr/lib64/gcc/x86_64-suse-linux/7/../../../../x86_64-suse-linux/bin/ld: /tmp/ccG8YiFG.o: in function `main':

/home/dblaheta/intro/halving.cpp:8: undefined reference to `halve(int)'

collect2: error: ld returned 1 exit status

Figure 9.1: A typical linker error

The fix to this kind of linker error is to make sure that all promised functions have
actually been defined (and have the signature that was promised for them).
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9.4 Can we write functions that return nothing?

If the point of a function is to consume parameter values and produce return values,
there is an interesting question of how to think about things that the function does
other than computing the return value.

Any effect a function has other than its return value is formally known as a side
effect of that function. It’s possible for functions to read input or print to the screen, side effect
or modify files, or to modify values of variables elsewhere in the program, and all of
these are side effects. A side effect is not bad (unless it’s unexpected or incorrect, of
course), but they can make a program a little harder to reason about if a function
has side effects on top of its primary task of returning a value.

However, sometimes one of those effects is really the intended job of the function:
“print the entire contents of the vector, one item per line” is a very well-defined
task, and writing a function to do that is probably a reasonable design choice. The
output is still referred to as a side effect—again, this is a technical term—but it is
not surprising or unexpected because it’s part of the description of the function.

Indeed, it’s so much the main purpose of the function that it doesn’t make sense to
return a value at all. When writing a function that will have no return value, we
still need to put something as the return type, a sort of placeholder, and for this
we use the special typename void. A void function is one that explicitly does not void

void functionreturn anything (and if you try to return a value from it, the compiler will reject
that as an error). So our print-the-whole-vector function might look like this:

1 // prints the full contents of the given vector to cout, one element per line

2 void print_words (vector<string> words)

3 {

4 for (string word : words)

5 {

6 cout << word << endl;

7 }

8 }

Program fragment 9.9

9.5 What about a function with no parameters?

It’s certainly syntactically valid to write a function that takes zero parameters, but
the first version that suggests itself isn’t very interesting:
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1 // always returns "hello"

2 string always_hello ()

3 {

4 return "hello";

5 }

Program fragment 9.10: Why would you do this?

Normally, if we want a function to compute something, we want that computation
to be different each time it’s run, and the way to make that difference is to make
use of the parameter(s) to control it.

The parameterless function can potentially be useful, though, if the variation comes
from outside the function, in the form of a side effect. There are at least two useful
side-effect-based ways to control a function, that might be used in a function with
zero parameters. The first is input: if you read from cin, and return the result
with or without processing, that would be a reasonable use of a function with no
parameters:

1 // reads a name consisting of two "words" as a single string

2 string read_full_name()

3 {

4 string first;

5 cin >> first;

6 string last;

7 cin >> last;

8 return first + " " + last;

9 }

Program fragment 9.11

Another side effect that might make a parameterless function useful is accessing a
random number generator. In the <cstdlib> header, C++ provides a builtin function
random() that returns a different number every time it’s run, ranging from 0 up to random()

about 2 billion on most systems.

That’s a big number, and typically when you want randomness in a program, it’s
to choose between a small number of options. A standard trick for turning a large
random integer into a small one is to use the remainder operator—if you divide a
big number by, say, 4, the remainder is about equally likely to be 0, 1, 2, or 3.
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Encapsulating that computation into a function is a nice way to simplify the code
that calls it:

1 // generates a whole number from 1 to 6, inclusive

2 int roll_die()

3 {

4 return (random() % 6) + 1;

5 }

Program fragment 9.12

9.5.1 Seeding the random number generator

If you typed in the function from the last section and tried to use it, you might have
noticed that the sequence of die rolls is the same every time you run the program—
not very random! A full discussion of random number generation is outside the
scope of this book, but it’s important to know that random numbers are generated
by starting with a random seed and then using that number to generate other random seed
numbers. You only provide the seed once per program, with a call to srandom, and
as long as the seed is different each time the program runs, the random numbers
will be unpredictably different each time also.

A conventional, quick way to do this is using the time function found in <ctime>,
which when called as time(nullptr) gives the number of seconds that have passed
since January 1, 1970. That number changes every second! (What on earth is
nullptr? We’ll have to defer the details for now, but briefly, the function offers
some more advanced options, and nullptr is a way for us to decline to use them.)
Our resulting program might thus be:
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1 #include <iostream>

2 #include <cstdlib>

3 #include <ctime>

4 using namespace std;

5

6 int roll_die();

7

8 int main()

9 {

10 srandom (time(nullptr)); // Call once in any program where random is used

11

12 cout << "Three random die rolls:" << endl;

13 cout << roll_die() << endl;

14 cout << roll_die() << endl;

15 cout << roll_die() << endl;

16

17 return 0;

18 }

19

20 int roll_die()

21 {

22 return (random() % 6) + 1;

23 }

Program fragment 9.13

On some compilers, the extra included headers <cstdlib> and <ctime> might not
be required (they may get automatically included by <iostream>) but it’s a good
idea to include any headers corresponding to functions you know you’ll be using.



Chapter 10

Conditionals revisited: boolean
logic

20221014-0930

We’ve been using logic and comparisons since we first introduced if, but we’ll
formalise and develop them further in this chapter, letting us express more complex
logical decisions and encapsulate them into functions.

10.1 Boolean expressions

Expressions that are designed to work as conditions are referred to as boolean, after boolean
the mathematician George Boole (who was among the first to study them). He
observed that if a type of value can only have two possible values—in C++ we write
them as true and false—there are some interesting properties that arise when true

falseoperating on them and combining them. We have already seen a few kinds of
boolean expressions, which we’ll now explore in a little more detail.

10.1.1 Boolean operators

There are six comparison operators in C++, all of which work on numbers, strings,
and characters:

80
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< < Less than
> > Greater than
= == Equal
≤ <= Less than or equal
≥ >= Greater than or equal
6= != Not equal

Figure 10.1

All six are probably familiar as mathematical operators, but in C++ (and many other
programming languages) they are typed with keyboard characters as shown in the
table above. When used on numbers (either int or double, or a combination), they
carry their usual mathematical meaning. When used on characters and strings,
they indicate whether one value is earlier than the other, according to a version of
alphabetical order as indicated in Section 7.3.3.

As we have seen, these comparisons can be used in the conditions of if and while

statements.

1 while (n < 5)

2 if (word == "STOP")

3 if (ch <= 'Z')

Program fragment 10.1: Examples of using comparison operators

10.1.2 Boolean functions and variables

We have also seen some specific examples of boolean functions, functions such as boolean functions
isupper that can be called to serve as conditions:

1 if (isupper(letter))

Program fragment 10.2

Methods can also be boolean, as with the (not previously mentioned) method .empty

of every string value:
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1 if (line.empty()) // equivalent to: if (line == "")

Program fragment 10.3

We can also define our own boolean functions, using the typename bool as the bool

return type; the return statements should either return true or false explicitly, or
return some other boolean expression:

1 bool lower_or_nonletter (char ch)

2 {

3 if (isletter(ch))

4 {

5 return islower(ch);

6 }

7 else

8 {

9 return true;

10 }

11 }

Program fragment 10.4

Once defined, it can be used in any condition:

1 for (char letter : phrase)

2 {

3 if (lower_or_nonletter(letter))

4 {

5 cout << letter;

6 }

7 }

Program fragment 10.5

Indeed, the bool type is one much like the others we know (like int and string),
and can be used in the same ways, including as the type of a variable, which is
occasionally useful for pre-computing and storing the result of a boolean expression,
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and later using it as a condition:

1 bool negative = n < 0;

2 // ...

3 if (negative)

4 {

5 // ...

6 }

Program fragment 10.6

but is perhaps most useful when signaling loop stopping conditions when a break

statement is not suitable:

1 bool more_left = true;

2 while (more_left)

3 {

4 // do some stuff

5 if ( ... )

6 {

7 more_left = false;

8 }

9 // other stuff

10 }

Program fragment 10.7

10.2 Combining boolean expressions

It is often the case that the logic of an algorithm requires multiple conditions to be
combined—multiple conditions on the same value, or conditions on multiple different
values. In English, we would say that one condition must be true and another must
also be true; and similarly we use the words or and not to combine and modify
conditions.

So also in C++. The operators and and or can sit between any two other boolean and

orexpressions, and the operator not can be used before any boolean expression, to

not
build a more complicated expression.
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1 if (x > 0 and y > 0) //runs when both variables are positive

2 // ...

3

4 while (not ispunct(ch)) //until the character is punctuation

5 // ...

6

7 while (isletter(ch) or ch == '-') //when ch is either a hyphen or a letter

8 // ...

9

10 if (n > 0 and 1 / n > 0.25) // what if n is zero? See below

11 // ...

Program fragment 10.8

The last example in that listing illustrates an important aspect of the boolean opera-
tors known as short-circuiting . On first inspection, it might seem that the expression short-circuiting
runs the risk of crashing the program when n is zero, due to a divide-by-zero error.
But it is in fact safe, because the boolean operators are guaranteed to be evaluated
left-to-right, and to stop once the outcome is known. Here, in the case when n is
zero, the expression n > 0 is false, so the overall expression cannot possibly be true,
so the right side is never evaluated. Similarly, an expression like this is safe:

1 if (str.empty() or str.at(0) == '+')

2 // ...

Program fragment 10.9

Here, in the case where the string str is the empty string, the expression str.empty()

is true, and so the overall expression is guaranteed to be true, and so it does not
evaluate the right side (which would be an error since there is no character at in-
dex 0).

An important side note: though the rest of this book will continue to use these
forms (and, or, not), each has a punctuation-based form as well, which is precisely
equivalent, and is also widely used:
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and &&

or ||

not !

Figure 10.2: Alternate forms of boolean operators

If you do use the punctuation-style boolean operators, it’s critical that you use the
doubled forms as shown; the operators & and | do exist but mean something slightly
different, and will usually compile and sometimes seem to work (at least in some
cases), but will lead to subtle errors.

10.2.1 Warning: arithmetic “between” expressions

In mathematical contexts, it is common to indicate that a value falls within a range
using an expression of this general form:

0 ≤ i < n

Figure 10.3

However, the seemingly similar boolean expression is a trap:

1 if (0 <= i < n) //WARNING: won't do what you expect

2 // ...

Program fragment 10.10

A few programming languages (notably, Python) do permit this notation in its
mathematical meaning, and some others will mark it as a syntax error; but many,
including C++, will compile it, but it won’t work. (The reason it compiles is that
boolean values can be treated as numbers, so the first comparison (here 0 <= i)
evaluates to either 0 or 1, and that value is then compared to n. Not what you’d
want.) To perform the equivalent comparison in C++ (and most other programming
languages), you need to explicitly make both comparisons and combine them with
a boolean operator:
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1 if (0 <= i and i < n) // this one works

2 // ...

Program fragment 10.11

10.2.2 Warning: multiple comparisons to the same variable

Sometimes we want a program to behave in a certain way when a variable holds
any of a small set of values. It is natural to express the condition in English as
something like this:

If the answer is either “Y” or “y”, ...

Figure 10.4

and so we might näıvely (but incorrectly) translate this into C++ as

1 if (answer == 'Y' or 'y') //WARNING: always evals to true

2 // ...

Program fragment 10.12

Another trap! It compiles, but it definitely does not do what you want it to. (Here
the reason is the inverse of the issue in the previous section: numbers and other val-
ues can be treated as boolean values, so the right side of the or, which is simply ’y’

by itself, is converted to a boolean (specifically, true) and so the overall condition
is always true. Not what you’d want.) To perform the intended comparison, always
ensure that both sides of any boolean operator are themselves boolean expressions:

1 if (answer == 'Y' or answer == 'y') // this one works

2 // ...

Program fragment 10.13
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10.3 Truth tables

In this section we dive a little deeper into the boolean operators introduced in the
previous section.

The and operator works about the way most people would expect it to: the overall
expression is true exactly when both the expression to the left of and and the
expression to the right of and are true. One way to express this is through the
following truth table: truth table

and Right T F
Left

T T F

F F F

Figure 10.5: Truth table for and

The corresponding table for the or operator is similar, but with a possibly surprising
value in the upper-left quadrant:

or Right T F
Left

T T T

F T F

Figure 10.6: Truth table for or

When working with program logic (or with propositional logic in general), the or

operator is to be understood as an inclusive or, meaning that it’s true if its left or
right operand are true, or both.

Finally, for completeness, the table for not:



CHAPTER 10. CONDITIONALS REVISITED: BOOLEAN LOGIC 88

not Right T F

F T

Figure 10.7: Truth table for not

This one looks a little different because not only has a single operand, to its right,
rather than having one on each side.

10.4 Complex boolean expressions

Because the boolean operators both require boolean expressions and evaluate to
boolean values, they can be combined in arbitrarily complex combinations, using
multiple operations. For example,

1 if (index >= 0 and not isletter(word.at(index)))

2 // ...

3

4 if ( (x > 0 and y > 0)

5 or (x == -1 and y == -1)

6 or (not checkBounds) )

7 // ...

8

9 while ( remaining > 0 and

10 (process(numbers, x) or otherProcess(numbers, y, z)) )

11 // ...

12

13 return 0 <= i and i < size and 0 <= j and j <= counter;

Program fragment 10.14

As boolean expressions get complex, it’s often a good idea to use parentheses to
indicate what order to evaluate them. There is a standard order of operations—not

is evaluated first, then and, then or—but if you are uncertain, the parentheses make
it unambiguous. Note that in the above listing, removing the parens in the second
if would keep the logic the same, but removing the parens within the condition of
the while would change the outcome; it is currently of the form
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r > 0 and ( p(n,x) or oP(n, y, z) )

but the no-paren version

r > 0 and p(n,x) or oP(n, y, z)

is actually equivalent to

( r > 0 and p(n,x) ) or oP(n, y, z)

As expressions get more complex, in order to understand how they evaluate, it’s
sometimes useful to work with another form of truth table (which can work with
more than two expressions). Here we write the simplest parts of the boolean expres-
sion as column headers, then a double line, then their combined form; then in each
row, the values to the left of the double bar represent the “inputs” to the system,
and we evaluate them to eventually show the “output”. For the expression m<2 and

n>5:

m<2 n>5 m<2 and n>5

F F F
T F F
F T F
T T T

Figure 10.8

In more complex expression, we add a column header for each progressively larger
combination. Applying this to the condition from the while statement above,

r>0 p(n,x) oP(n,y,z) p(n,x) or oP(n,y,z) r>0

and (p(n,x) or oP(n,y,z))

F F F F F
F T F T F
F F T T F
F T T T F
T F F F F
T T F T T
T F T T T
T T T T T

Figure 10.9

We can use this style of truth table to emphatically illustrate how evaluating the
version without parentheses will differ:
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r>0 p(n,x) oP(n,y,z) r>0 and p(n,x) r>0 and p(n,x)

or oP(n,y,z)

F F F F F
F T F F F
F F T F T
F T T F T
T F F F F
T T F T T
T F T F T
T T T T T

Figure 10.10

The bottom half of the table has the same outcomes, but the third and fourth rows
yield a different result, so we know the two expressions are not equivalent.

10.4.1 DeMorgan’s Law

There are many logical rules that have been noted to explain and record how different
boolean expressions might be proven to be equivalent. (A complete analysis is
known as boolean algebra and will generally be found in a discrete math class— boolean algebra
a working familiarity with them is useful as programs get increasingly complex.)
One in particular needs a little of our attention, because so many people find it
counterintuitive that it can easily lead to logical bugs if you’re not aware of it, and
it tends to turn up in some form almost any time you write complex expressions
that have negation (not) in them.

DeMorgan’s Law tells us that if we negate a whole expression that contains a boolean DeMorgan’s Law
operator, like this:

if ( not( isletter(ch) or isspace(ch) ) )

that it is NOT equivalent to näıvely “distribute” the negation:

if ( not isletter(ch) or not isspace(ch) ) ) //NOT THE SAME

but it IS equivalent to distribute the negation if you also change the operator:

if ( not isletter(ch) and not isspace(ch) ) ) //equiv to original

This may seem surprising. But consider: if it is not the case that a character is
either a letter or a space—then the character is definitely not a letter, and also
definitely not a space. But if we consider the middle example, marked NOT THE
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SAME, we’ll see that expression will always be true, since for any given character,
either it’s a non-letter, or (if it is a letter) it’s a non-space.

We can prove it with truth tables:

lett spc lett or spc not (lett or spc)

F F F T
T F T F
F T T F
T T T F

Figure 10.11

lett spc not lett not spc not lett and not spc

F F T T T
T F F T F
F T T F F
T T F F F

Figure 10.12

10.5 Testing with complex booleans

When trying to test your program or function to confirm that it works, it’s important
to provide effective test coverage, making sure that you’re not letting some likely-to-
occur case slip by. If the processing is largely numeric, sometimes just two or three
cases are enough, and certainly we can’t seriously test our programs with every
possible number. But with boolean logic... there are only two possible values for
every simple boolean expression, and even when we combine them, there are often
a manageably small number of distinct cases. Sometimes we can literally test all of
them!

Even if the inputs themselves are not boolean, you can sometimes use the idea of
truth tables to help you with case analysis and test case building. Two rules of
thumb here:

� If you’ve got a truth table, or part of one, to help you think about the problem,
make sure that every section of the truth table (maybe not every single line)
is represented somewhere in your test cases.

� As you think about your algorithm, if you have if statements (and especially
if you also have else if blocks), make sure that every “branch” of the con-
ditional is represented somewhere in your test cases.
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Sometimes that means you’ll have three or five or more tests, but that’s ok! Don’t
add tests purely for the sake of adding tests, but if you can identify cases that
you’re writing program code for that aren’t showing up in the tests, it’s appropriate
to write more tests to cover them.
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Structures

v20221019-0430

Up to this point, we’ve seen five core types1 plus vectors that can contain one of
the others. There are many things out in the world that those core types can model
by themselves, and vectors let us model large collections of values.

But sometimes—frequently, even—the real-world data we have to handle is a little
more complex than singular values disconnected from anything else. For instance,
when modeling locations on a discrete 2D Cartesian plane, we need to provide
coordinates, often written as an (x, y) pair. These could in some circumstances
be specified as two separate variables, but what if we want to keep a collection of
multiple locations? What if we wanted to return a location from a function (which
can only return one value at a time)? Even when we can use separate variables to
track related data, it sometimes hinders human reading of the program if they have
to keep track of separate things, and always update them together or print them
together or whatever.

Once you think to look for it, this kind of multi-part data is everywhere. Books have
titles and authors (and maybe some other things). Automobile brands have a make
and a model. Customer info typically will have a name and an account number.
Street addresses have a whole bunch of distinct pieces.

C++ lets us model this kind of data by bundling it together as a single value, with
component parts that can be accessed by name; the overall value is called a struct struct
(after the keyword that builds it) or an object , and the component parts are usually object
called fields.

fields
1int, double, string, char, and most recently bool
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11.1 Defining a new struct type

To define a new struct, we need to specify:

� the name for the overall type, and

� a type and name for each field.

Since we want to be able to use these new types pretty much everywhere, they are
defined outside of any function, typically near the top of a .h file named for the
type.

Consider the example described above about modeling locations on a discrete 2D
Cartesian plane. In a file named Location.h, we could type

struct Location

{

int x;

int y;

};

By convention (not universal among C++ programmers, but fairly common), we
begin the name of the type with a capital letter to indicate that it is distinct from
types provided with the language and standard library. Syntactically, the word
struct and the curly brackets are mandatory, as is the semicolon after the closing
bracket—unlike statement blocks, which are not followed by semicolons.2

Notice that each line within the struct looks just like declaring a local variable.
That’s not an accident! The syntax is intentionally the same: first the type, then
the name, then a semicolon. Another word for field is instance variable, after the instance variable
fact that each separate instance of the struct can have its own separate value for instance
that field.

Let’s see how this works in practice.

Once we have defined the type, we can declare and init variables of the type:

Location origin = Location{0,0};

Location quad1 = Location{3,4};

The only new syntax here is that the initial value for the variables uses the name
of the type, and then specific values for its fields inside curly brackets, a bit like we

2The reason for the semicolon here is largely historical and has to do with variable declaration.
Most modern compilers will at least give you a good error if you forget it.
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learned to do when initialising vectors.3 The values in the curly brackets represent
the values to assign to the fields of the object, in the order they were declared.

If we want to access an individual field of an object, we follow the name of the
object with the name of the field, e.g. “origin.x”. So to print out the contents of
the quad1 variable we might write a statement like

cout << "quad1 is at (" << quad1.x << "," << quad1.y << ")." << endl;

which in this case would print

quad1 is at (3,4).

Of course, if we only ever accessed the contents of one of these struct values by
separately checking each field, they wouldn’t bring much advantage. In the next
section we’ll see one important way to use them.

11.1.1 Review

1. Write code to define a struct to model items stocked in a grocery store, which
have names and prices.

2. Write code to define a struct to model full names, which can be separated into
first names and last names. (This is an oversimplification! See the end-of-
chapter exercises to work towards fixing it.)

11.2 Structs as function parameters

We’ve long been able to write functions that take multiple parameters, so we could
imagine declaring a function such as this one:

/** determines whether the location corresponding to the given x and

* given y value lies on either axis */

bool onAxis (int x, int y);

The downside to such a design is that the function description is a bit clunky and
the parameters are not intrinsically linked to each other. However, now that we
have a coherent single type called Location for modelling locations, we can rewrite
this header as

3Indeed, in this context we can use the exact same syntax as we did for vectors, e.g.
Location quad3 = { -5, -12 };

but by preceding the curly brackets with the type name we can use it in a few other places too, as
we’ll soon see.
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/** determines whether the given Location lies on either axis */

bool onAxis (Location loc);

The semantics of the function should be fairly clear from the description:

The expression should be

onAxis(Location{0,0}) true

onAxis(Location{0,7}) true

onAxis(Location{-3,0}) true

onAxis(Location{3,4}) false

onAxis(Location{5,-12}) false

Note, though, that in order to specify these test cases we can make concrete values
of type Location on the spot by making use of the name notation we used when
initialising variables. Of course, if we have the variables declared (as from the
previous section) we can use those too:

The expression should be

onAxis(origin) true

onAxis(quad1) false

since variables like origin and quad1, declared as being of type Location, can be
used anywhere a Location object is required, including as the parameter to onAxis.

Defining the function requires no new syntax beyond that introduced in the previous
section to access the individual fields:

bool onAxis (Location loc)

{

return loc.x == 0 or loc.y == 0;

}

Consider further a function designed to compute the distance between locations.
Each location has two coordinates, so a function that tried to do this before structs
would need four parameters, and the opportunities for confusion would be many.
But with our new struct, we can declare the function as follows:

/** computes the distance (Euclidean) between two given Locations */

double distance (Location first, Location second);

Reusing the previously-named values for convenience:
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The expression should be

distance(origin, origin) 0.0

distance(origin, Location{0,7}) 7.0

distance(origin, Location{-3,0}) 3.0

distance(origin, quad1) 5.0

distance(quad1, origin) 5.0

distance(Location{-2, 3}, Location{3, -9}) 13.0

distance(Location{3, 3}, Location{4, 4})
√

2 or about 1.414

Values that line up vertically or horizontally are easy to compute by hand, and some
carefully-chosen Pythagorean triples make most of the rest work out nicely, but it’s
important to note that answers will not in general work out to integer values!

The body of the function again makes use of the dot to access fields, but is otherwise
just an implementation of the Pythagorean/Euclidean distance formula:

double distance (Location first, Location second)

{

int xdiff = first.x - second.x;

int ydiff = first.y - second.y;

return sqrt(xdiff * xdiff + ydiff * ydiff);

}

11.2.1 Review

1. Based on the grocery item struct you wrote in the previous review, write a
function that determines whether a given grocery item costs more than $5.

2. ... and another function that computes the total cost of a given item when a
given tax rate is applied.

3. Based on the full name struct you wrote in the previous review, write a function
that builds a string view of a given full name in “Last, First” format.

4. ... and another function that builds a string view of a given full name in
“First Last” format.

11.3 Structs as function return values

It’s not only possible to use struct values as input (parameters) to a function; we
can also use them as output (return values) from a function. Indeed, this usage is
arguably even more important, since we can always take in additional parameters,
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but can only return one value from a function—so if we want to in effect return two
things, we have to bundle them into a single (hopefully meaningful) object.

Returning a struct object from a function is syntactically no different than returning
any other type of value from a function: Declare it as the return type in the header,
and write a return statement (or more than one) that produces a value of that
type.

For instance, this function header continues the Location example from the previous
sections:

/** chooses which of two given Locations is closer to (0,0). */

Location closerToOrigin (Location a, Location b);

Its header looks just like other functions we’ve written, except that the return type
is Location. The following table gives some illustrative test cases for the function.
Note that the expected results are written in a human-readable (x, y) format rather
than something that might be directly typed into a program.

The expression should be

closerToOrigin(origin, origin) (0,0)
closerToOrigin(origin, quad1) (0,0)
closerToOrigin(Location{5,0}, Location{0,7}) (5,0)
closerToOrigin(Location{0,7}, Location{5,0}) (5,0)
closerToOrigin(Location{4,0}, quad1) (4,0)
closerToOrigin(Location{-4,0}, quad1) (−4, 0)
closerToOrigin(Location{-6,0}, quad1) (3,4)

In this case, the return statement can be simply returning one or the other of the
function’s parameter values. (Note also that we can make very effective use of the
distance function from the previous section!)

Location closerToOrigin (Location a, Location b)

{

constexpr Location origin = Location{0,0};

if (distance(origin, a) < distance(origin, b))

{

return a;

}

else

{

return b;

}

}
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That need not always be the case. This next function will need to construct a
brand-new Location value on the fly.

/** computes the Location that is the reflection through (0,0) of the

* given Location. */

Location reflectionThroughOrigin (Location loc);

Reflecting through a point just means finding the other point that’s exactly the
other side of the reflection point (here, the origin). That is,

The expression should be

reflectionThroughOrigin(Location{5,0}) (−5, 0)
reflectionThroughOrigin(Location{0,7}) (−7, 0)
reflectionThroughOrigin(quad1) (−3,−4)
reflectionThroughOrigin(Location{-5,-12}) (5, 12)
reflectionThroughOrigin(origin) (0, 0)

The algorithm here may now be obvious: to reflect through the origin, just negate
both components. The implementation of the function thus creates a value to return
using the same Location{...} syntax as we used when initialising variables, ex-
cept this time the values for the fields are themselves computed with mathematical
expressions:

Location reflectionThroughOrigin (Location loc)

{

return Location{-loc.x, -loc.y};

}

In general, the expressions used for the fields of the newly-built struct object can
be arbitrarily complex, as long as they produce values of the appropriate type for
that field (in this case, int, since both x and y are declared as int values).

It’s important to note that if a function is required to produce a value, simply
modifying an existing value (such as a parameter) won’t be enough. If we had
instead tried to do this:

Location reflectionThroughOrigin (Location loc) // WON'T WORK

{

loc.x = -loc.x;

loc.y = -loc.y;

}

we would have had a few problems. First of all, it says it returns a value, but doesn’t
do so! Even if we redeclared the function void, however, we run into the issue that
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(as with the core types), calling a function makes a copy of the parameter values,
so any modifications to the parameter variables are local to the function and are
lost when the function ends. Effectively, this implementation attempt would change
some internal values, and then drop everything on the floor, having no effect on
anything outside the function.

11.3.1 Review

1. Still building on the earlier full name example, Write a function that produces
the full name associated with a given string written in ”First Last” format.
Assume there is exactly one space in the parameter.

2. Write a function that produces the full name associated with a given string
written in ”Last, First” format. Assume there is exactly one comma and one
space in the parameter.

3. Still building the earlier grocery item example, write a function that produces
a grocery item just like a given one, except with a price that is 25 cents higher.

4. Write a function that makes a grocery item to model a “pack” of a given
number of a given other grocery item, with a name reflecting that fact and
a price that is the correct multiple of the original. For instance, if one soda
costs 30 cents, a pack of 12 might be called a “pack of soda” costing $3.60.

11.4 Vectors of structs

Yet another place that we can usefully use these new struct-type values is as contents
of a vector. We can make a vector of objects directly in the initialisation of a value:

vector<Location> collection = { Location{5,7}, Location{-1,4},

Location{3,10}, Location{2,-5}, Location{-4,-4} };

which might be appropriate for building test cases. More typically (in practice),
they would be read in from a file or from the user, or produced as the result of
another process (which we’ll see more of later).

Once we know that such vectors exist, we can write functions to process them. For
instance,

/** finds the location in the given vector that is furthest from (0,0)

* @precondition locs is not empty */

Location furthestFromOrigin (vector<Location> locs);
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The expression should be

furthestFromOrigin( { quad1 } ) (3, 4)
furthestFromOrigin( { origin, quad1 } ) (3, 4)
furthestFromOrigin( { Location{-6,0}, quad1, Location{0,7} } ) (0, 7)
furthestFromOrigin(collection) (3, 10)

Writing a function that processes a vector of struct objects is not substantially
different from the vector-processing functions we’ve written before. If we need to
drill down and access the fields of the objects, we can use dot notation to do so;
we can also make use of other functions that process the individual struct objects,
where applicable.

Location furthestFromOrigin (vector<Location> locs)

{

Location result = locs.at(0); //error if locs is empty!

for (Location loc : locs)

{

if (closerToOrigin(result, loc))

{

result = loc

}

}

return result;

}

11.4.1 Review

1. Write a function that counts the number of full names in a given vector that
match a given first name.

2. Write a function that finds the full name in a given vector that is alphabetically
first (by last name).

3. Write a function that computes the total cost of a given vector of grocery
items.

4. Write a function that determines whether any of the grocery items in a given
vector have a given name.



Chapter 12

Functions producing vectors
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We’ve previously studied vectors, and we’ve studied functions, and in this chap-
ter we’ll study functions that produce vectors. In some sense this will be mostly
review—though there are some new details about how functions work under the
hood, and a little bit of new syntax—but it deserves its own chapter because the
patterns we see when accumulating vectors are very important and may seem sub-
stantially different from the accumulator patterns we’ve already seen.

12.1 map

The map pattern in programming is related to the mathematical concept of a map- map
ping, and involves transforming some given vector of values into another vector, of
equal length, that “maps” each original value into a corresponding different value.
For instance, this function maps words into their corresponding lengths:

1 vector<int> wordLengths (vector<string> words)

2 {

3 vector<int> result = {};

4 for (string word : words)

5 {

6 result.push_back(word.length());

7 }

8 return result;

9 }

Program fragment 12.1
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For instance,

The expression would evaluate to a vector containing

wordLengths({"hi", "there"}) { 2, 5 }

wordLengths({"a", "b", "c"}) { 1, 1, 1 }

wordLengths({ }) { }

Figure 12.1

The pattern of the function is quite similar to the sum pattern from when we first
learned about accumulators; the biggest difference here is that the accumulation is
into a list, using .push back.

There are a few reasons to particularly identify and use this pattern. First, once
identified, we can see that the only major difference between any two mapping
functions is the parameter to .push back, so once a programmer knows that a
mapping is to be done, most of the function follows a very standard format.

The other is that a function like this can be used as part of a sequence of operations,
each relatively standard, that might be easier to assemble as “components” than
it would be to write as a single monolithic program. For instance, assuming the
Location struct defined in the previous chapter, one typical task might be to find
the average x value of an entire vector of locations. Using a function that first
collects the x values:

1 vector<int> xValues (vector<Location> locs)

2 {

3 vector<int> result = {};

4 for (Location loc : locs)

5 {

6 result.push_back(loc.x);

7 }

8 return result;

9 }

Program fragment 12.2

produces a vector of numbers that can be passed as the parameter to any standard
averaging function that takes a vector of numbers, leading to a simple statement
like



CHAPTER 12. FUNCTIONS PRODUCING VECTORS 104

1 cout << average(xValues(locs)) << endl;

Program fragment 12.3

12.2 Filter

Out next pattern is the filter pattern, which takes a given vector as parameter and filter
produces a brand-new vector that contains some, but not all, of the elements in the
original. Some condition serves to “filter” the values, keeping some and excluding
others from the final result. For instance, the following function filters a vector
to keep only the locations that are in the first quadrant, i.e. neither coordinate is
negative:

1 vector<Location> onlyQuadI (vector<Location> locs)

2 {

3 vector<Location> result = {};

4 for (Location loc : locs)

5 {

6 if (loc.x >= 0 and loc.y >= 0)

7 {

8 result.push_back(loc);

9 }

10 }

11 return result;

12 }

Program fragment 12.4

This pattern is similar to the counting pattern we’ve already seen: looping through
the entire vector, it uses an if statement to select only some of the values in the
vactor for further processing.

Where the map pattern produces a vector with the same length, but potentially a
different content type, a function that purely follows the filter pattern will produce
a vector with the same content type—since the values are copied from the original—
but will, in general, be shorter than the original. It’s certainly possible to write a
single function that combines aspects of both map and filter patterns—using an if

statement to select some elements of the vector, and then also mapping the element
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to some other related value—but using one map function, then a filter function, can
provide the same result, with a very straightforward pattern-based implementation.
Following on the earlier example, we might compute the average x value of all first-
quadrant locations in the list without writing any more functions than we already
have:

1 cout << average(xValues(onlyQuadI(locs))) << endl;

Program fragment 12.5

12.3 Pass-by-value (“copy”) semantics and reference pa-
rameters

At this point we need to dig in a little deeper on how function parameters work.
When a function is called, under normal circumstances C++ follows a pass-by-value pass-by-value
semantics, which means that the value that is seen inside a function is actually a
copy of the value that was sent as the parameter. This can potentially matter for
two different reasons: modifications to the value are purely internal to the function
(because the modifications are on a copy of the original), and the copying itself may
be expensive.

Why would the copying be “expensive”? Imagine for a moment that the vector we
used as a parameter had a thousand, or a million, or a billion elements. In that
case, calling a function in the usual pass-by-value form would require first copying
every element, even before any of the actions of the function are taken. When a
parameter is something simple like an int or double, the act of copying is quick, but
when a value could be arbitrarily large, like a vector or even a string, it’s preferable
to avoid copying unless it’s specifically necessary to the algorithm.

In C++, we have another option. If you pass by reference, the body of a function pass by reference
can be written identically, but it operates on the original value instead of on a
copy, saving the time and trouble of making the copy. To designate a parameter as
pass-by-reference, follow the typename with an ampersand (&):

1 int countNegative (vector<int>& numbers)

2 // ...

Program fragment 12.6: Passing by reference, version 1
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This confers an advantage—it does not require making a copy—but the very fact
that it is operating on the original value may also be a disadvantage: modifying the
original value, even if inadvertent, is now possible. Furthermore, if we mark a value
as a reference parameter, the compiler will require all values passed as parameters to
be variables that can be modified (and not, for instance, literal values constructed
on the spot).

As a result, in cases where the parameter is not meant to be modified by the function,
and we are only using reference parameters for reasons of efficiency (avoiding an
unnecessary copy), it’s a good idea to designate it as a const reference, preceding const reference
the type with the keyword const. For example,

1 int countNegative (const vector<int>& numbers)

2 // ...

Program fragment 12.7: Passing by const reference

This is the preferred way of declaring any parameters that are strings, vectors, or any
user-defined type—anything more complex than a single number—when there is no
need to modify the parameter value inside the function. It retains all the advantages
of references (no need to copy) without inviting any bugs from accidentally modifying
something. Furthermore, because it’s guaranteed that no changes will be made, the
compiler permits literals, values that cannot be modified, to be passed as parameters:

1 cout << countNegative ( {-1, 2, 4, -3, 0, -5} ) << endl;

Program fragment 12.8: A valid call to countNegative

When in doubt, specify parameters that are vectors as const references; remember
that doing so requires both the keyword const (indicating it won’t be modified) and
the ampersand & (indicating it is a reference).

12.4 Adding and removing values

Sometimes, though, we want to write a function whose job is specifically to modify
the contents of a vector. In such a case, we can’t use pass-by-copy semantics,
because if we just modified the copy, the modification wouldn’t persist and the
function wouldn’t be very useful. And we also can’t use const references, since that
would prevent the modifications that are part of the intent of the function.
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In its simplest form, this could just modify a vector by adding or removing something
at the end of the vector, using .push back or .pop back:

1 // Precondition: given vector is not empty

2 void duplicateLast (vector<int>& values)

3 {

4 int value = values.at(values.length() - 1);

5 values.push_back(value);

6 }

Program fragment 12.9

Other than the ampersand in the header, there’s nothing in the syntax that is
any different from other vector-processing code that we’ve written; without that
ampersand, the function would compile and run, but the modification to the vector
wouldn’t “stick” once the function ended, since the operation would be performed
on a copy of the vector.

But adding a single element to the end of a vector is both simple and a bit uninter-
esting. We could add all the elements from another vector:

1 void addAll (vector<string>& words, const vector<string>& others)

2 {

3 for (string word : others)

4 {

5 words.push_back(word);

6 }

7 }

Program fragment 12.10

Note that the second parameter other, is declared const, because we do not plan
on modifying it.

What if we want to remove a value from the vector, but not at the end of the vector?
If our only tool for removing an element is .pop back, we need to do a bit more work
to remove something in the middle while keeping everything else in the same order.
If we mean to remove an element at a given index, all the elements after it need to
effectively “move over” by one. One at a time, we’ll replace an element with (a copy
of) the element next to it, until it is the very last element that is duplicated—and
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then we can safely call .pop back to remove it.

1 void removeElementAt (vector<double>& values, int rmIndex)

2 {

3 int i = rmIndex;

4 while (i < values.size() - 1)

5 {

6 values.at(i) = values.at(i+1);

7 i += 1;

8 }

9 values.pop_back();

10 }

Program fragment 12.11: removing an element, shifting the others over

Take a moment to trace out for yourself how this function runs when it has a five-
element vector and it removes something at index 1, and then try it again with a
different five-element vector and remove something at index 4.

With that in mind, try to sketch out the algorithm for a function insertElementAt,
which should insert into a given vector of strings a given value at a given index. As
with the previous example, depending on the index, you may need to move a number
of existing elements to make the rest of the algorithm work. Trace your algorithm
to see if it works before continuing on!

It is likely, if you haven’t thought about this problem before, that your initial at-
tempt is modeled after the removeElementAt implementation, and looks something
like this:



CHAPTER 12. FUNCTIONS PRODUCING VECTORS 109

1 void insertElementAt (vector<string>& values,

2 const string& value, int insIndex)

3 {

4 int i = insIndex;

5 while (i < values.size() - 1)

6 {

7 values.at(i+1) = values.at(i);

8 i += 1;

9 }

10 values.at(insIndex) = value;

11 }

Program fragment 12.12: inserting elements, still buggy

This version has many of the required elements, but is incorrect in two main ways.
First, it never calls .push back, so the size of the vector never grows! But as you
think about where the call to .push back might go, the other, more subtle problem
may present itself: what value do you need to add at the end of the vector, and
where in the function should that action go?

After the insertion, the new last element of the vector will be the same as the old
last element1—meaning that what needs to be passed to .push back is a copy of
the existing last element. And, more importantly, moving the last element has
to happen first... because if the copying proceeds in the order shown in the above
implementation, the value originally at insIndex will be repeatedly copied on top
of everything else, and all the other values are lost. But if the last element is copied,
that leaves a spot for the next-to-last element to be copied, and so on—we need to
iterate from back to front:

1Kudos if you spot the exception to this statement—stay tuned
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1 void insertElementAt (vector<string>& values,

2 const string& value, int insIndex)

3 {

4 values.push_back(values.at(values.size() - 1));

5 int i = values.size() - 1;

6 while (i > insIndex)

7 {

8 values.at(i) = values.at(i-1);

9 i -= 1;

10 }

11 values.at(insIndex) = value;

12 }

Program fragment 12.13: Much better, but still has a bug

Try tracing that version with a problem where you need to insert an element into
a 5-element vector at index 2. Then, try to identify where the remaining bug is.
What are some meaningful edge cases to try here?

(Really, try to spot the bug yourself before you keep reading!)

The case to be looking for here is the one where the insertion index is at the very
end of the vector. Even in that case, the above implementation will often end up
with the correct result after some unnecessary work—it doesn’t need to copy the
old last element, but at least after calling .push back the vector is set up for the
last assignment statement to correctly place the inserted element. But the function
will actually fail if the vector is empty, even if the insertion is (validly!) at index 0,
because that first line will try to grab the “current last element”, which doesn’t
exist.

So this version, which treats inserting at the end of the vector as a special case, is
cleaner and more correct:
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1 void insertElementAt (vector<string>& values,

2 const string& value, int insIndex)

3 {

4 if (insIndex == values.size()

5 {

6 values.push_back(value);

7 }

8 else

9 {

10 values.push_back(values.at(values.size() - 1));

11 int i = values.size() - 1;

12 while (i > insIndex)

13 {

14 values.at(i) = values.at(i-1);

15 i -= 1;

16 }

17 values.at(insIndex) = value;

18 }

19 }

Program fragment 12.14: Inserting an element

In general, if you’re modifying a vector, you need to think about how its elements
need to move around—maybe hardly at all, maybe a lot—and plan accordingly.
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Indexed loops, nested loops,
and 2D data
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In this chapter we’ll return to the mechanics of writing loops, and introduce a new
style of loop that gives us more control over iteration, enabling some more complex
interactions with our data.

13.1 Indexed for loops

The first type of loop we saw, back in Chapter 5, was a for loop designed to access
every element of a vector (and later, every character in a string). Later, we saw
while loops, which gave a more general kind of loop construct; but we never really
used them to access an already-existent vector, because the loop patterns we were
using worked fine with for, which was simpler.

Sometimes, though, we will see an algorithm that requires more fine-grained control
over the iteration, perhaps by skipping certain elements, or iterating in an unusual
order, or accessing adjacent elements, or something else that requires knowing the
index of the element as well as its value. Because we can use the .at method of a
vector, we can use a while loop to produce each valid index in turn, and use them
to access the elements. (The remove and insert algorithms in the previous chapter
were examples of this.) This technique is sometimes called an indexed loop. indexed loop

For instance, an algorithm to find the indices of all the empty strings in a vector
requires knowing the index of the elements as we look at them! Here is a version of
that algorithm:

112
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1 // e.g. { "abc", "", "", "def", "" } should produce { 1, 2, 4 }

2 vector<int> emptyIndices (const vector<string>& strs)

3 {

4 vector<int> result = {};

5 int i = 0;

6 while (i < strs.size())

7 {

8 if (strs.at(i) == "")

9 {

10 result.push_back(i);

11 }

12 i += 1;

13 }

14 return result;

15 }

Program fragment 13.1: Finding matching indices, take 1

Here, i is the loop control variable—init before, compare as keep-going condition,
and make progress each time through the loop—as well as being an index of the
strs vector. When a match is found, the index is stored in the accumulator and
eventually returned.

Another algorithm, to determine whether a vector of values is in ascending order—
each element greater than the previous one—is naturally implemented by directly
comparing each adjacent pair of elements:
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1 // e.g. { 1.0, 2.5, 2.6, 37.0, 37.00001, 50.0 } should be true

2 // and { 1.0, 2.5, 2.5, 37.0, 36.999, 50.0 } should be false

3 bool isAscending (const vector<double>& values)

4 {

5 int i = 1;

6 while (i < values.size())

7 {

8 if (values.at(i-1) >= values.at(i))

9 {

10 return false;

11 }

12 i += 1;

13 }

14 return true;

15 }

Program fragment 13.2: Checking ascending order, take 1

Here the LCV begins at 1 because the loop accesses at both index i-1 and i (so
starting at 0 would access a negative index!), but otherwise the loop control looks
pretty similar.

In fact, this LCV pattern is so common and so standard, it enjoys direct language
support to help you make sure you don’t forget any of the three parts.

13.1.1 C-style for loops

Recall that the Loop Control Variable (LCV) pattern has three parts:

� declare and init the LCV, or otherwise set it up, before the loop

� establish the keep-going condition, involving the LCV

� make progress on the variable, inside the loop (often at the bottom), always

In C++ there are two different loop types that involve the keyword for, and the older
of the two—dating back to the C programming language from the 1970s and thus
often known as C-style for—is one that simply encapsulates this LCV pattern. To C-style for

use it, write the keyword for, and then in parentheses, the three parts of the LCV
pattern, separated by semicolons. The following two loops have almost precisely
identical effects:
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1 int i = 1;

2 while (i <= 10)

3 {

4 cout << i << endl;

5 i += 1;

6 }

7

8 for (int i = 1; i <= 10; i += 1)

9 {

10 cout << i << endl;

11 }

Program fragment 13.3: Two loops that print 1-10

The first clause of the C-style for is expected to init the LCV (usually including
declaration, in which case its scope is precisely the loop1), the second is a condition
that is evaluated repeatedly to decide whether to execute the loop again, and the
third is an update statement to be executed at the end of the loop.

Note that last bit carefully—the end of the loop.

It’s really important to remember that this for loop was and is seen as shorthand
for the while-based LCV pattern, which virtually always does its update at the end
of the loop, and so that’s where the update happens in the shorthand version too.
If we executed the i += 1 at the top of the loop in the above example, the numbers
would start at 2!

Let’s revisit the emptyIndices algorithm with the new shorthand:

1This fact leads to an extremely subtle way that the two loops above can differ in their effects,
and the only reason I had to write “almost” in the description—can you spot it?
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1 vector<int> emptyIndices (const vector<string>& strs)

2 {

3 vector<int> result = {};

4 for (int i = 0; i < strs.size(); i += 1)

5 {

6 if (strs.at(i) == "")

7 {

8 result.push_back(i);

9 }

10 }

11 return result;

12 }

Program fragment 13.4: Finding matching indices, take 2

Although it doesn’t provide any capability not already present in the base while

loop, the conciseness of the one-line LCV pattern (and the ability to see all three
parts in a quick glance) has made the C-style for loop ubiquitous, and worth training
your eyes to read fluently.

In fact, there’s one more piece of shorthand you should learn to read as well.

13.1.2 The increment (and decrement) operators

Particularly in the LCV pattern, but also in a number of longer patterns and algo-
rithms, we see the most common use of the += operator to add exactly 1 to a variable.
Because it’s a special case, and so common, a special operator ++ was defined just to ++

handle this “plus one” operation, also known as incrementing . Anyplace you would incrementing
write

value += 1

you can instead, equivalently, write

++value

which doesn’t even really save much space on the page but a lot of people prefer
writing it, and in most contexts you’ll see it much more frequently than += 1. The
increment operator can also be written after the variable it is affecting:

value++
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and when it is being used as a simple statement or as the update in a C-style for

loop, these two forms are effectively equivalent.2

Though somewhat less common, the mirror operation known as decrementing also decrementing
has a shortcut operator:

value -= 1

can be replaced with

--value

with no change in meaning.

The loop format and the increment operator let us rewrite our isAscending function
as follows:

1 bool isAscending (const vector<double>& values)

2 {

3 for (int i = 1; i < values.size(); ++i)

4 {

5 if (values.at(i-1) >= values.at(i))

6 {

7 return false;

8 }

9 }

10 return true;

11 }

Program fragment 13.5: Checking ascending order, take 2

An experienced programmer is likely to use those forms when writing a program, so
you should get comfortable reading them.

13.2 Nested loops

We’ve seen before that if statements can “nest” inside each other, and of course
we have many examples of an if statement inside a loop, so it may not be entirely
surprising that we can also write one loop inside another, forming a nested loop nested loop

2In more complex uses, outside the scope of this course, they behave slightly differently, so if
you try to build complicated one-liners that involve ++, read up on “pre-increment” and “post-
increment” first.
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pattern.

One of the simplest nested loops we can write is one that prints a small rectangle
on the screen:

for (int m = 0; m < 5; ++m)

{

for (int n = 0; n < 3; ++n)

{

cout << "@";

}

cout << endl;

}

@@@

@@@

@@@

@@@

@@@

Figure 13.1: A simple nested loop, and what it prints

Before you continue, try to work out why it prints in that pattern. Why not hori-
zontally? What would happen if the endl were inside the inner loop, in addition to
or instead of where it is now? What if it were outside both loops?

Pushing the envelope a little, we can use some char values to shed some light on
how this works:

for (char ch = 'J'; ch <= 'M'; ++ch)

{

for (int n = 0; n < 7; ++n)

{

cout << ch;

}

cout << endl;

}

JJJJJJJ

KKKKKKK

LLLLLLL

MMMMMMM

Figure 13.2: A nested loop with letters, and what it prints

Each full trip through the inner loop prints seven copies of the current value of ch

from the outer loop, then one newline, then the next letter is up to bat. There is no
special meaning to a nested loop—it works just like any other, and the entire loop
body is run from start to finish (even if it contains other loops that need to run in
their entirety) before moving on to the next iteration.

13.3 An application of nested loops: sorting

A very frequent need for data is that it be put in order, usually to make some
future processing more efficient (or at least to make it prettier or more readable in
the output). This process is referred to as sorting the data, and there are literally sorting
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hundreds if not thousands of distinct sorting algorithms, many of them in widespread
use. An interesting property of the sorting problem is that in general—unless your
data already happens to luckily be in order—you can’t sort a vector in one single-
pass iteration through that vector. Because you don’t know what order it’s in to
begin with, you might have to compare each element to many other elements to find
where it’s supposed to go.

So one strategy is to use two nested loops to do the sorting. The selection sort selection sort
algorithm is not the fastest possible sorting algorithm, but it is straightforward and
it gets the job done. Its basic strategy is:

Target the first position in the vector
Loop through the rest of the vector to find the smallest value
If there’s a value smaller than one in the target position, swap places
Advance to the next position and repeat

Figure 13.3: Selection sort pseudocode

That is, it is always selecting the smallest remaining value, and placing it into its
final, sorted position in the vector. Turned into C++ code, it looks something like
this:
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1 void selection_sort (vector<double>& values)

2 {

3 for (int targetIndex = 0; targetIndex < values.size(); ++targetIndex)

4 {

5 int smallestIndex = targetIndex;

6 for (int i = targetIndex + 1; i < values.size(); ++i)

7 {

8 if (values.at(i) < values.at(smallestIndex))

9 {

10 smallestIndex = i;

11 }

12 }

13 if (smallestIndex != targetIndex)

14 {

15 swap (values.at(smallestIndex), values.at(targetIndex));

16 }

17 }

18 }

Program fragment 13.6: Selection sort

The outer loop here sets targetIndex to each index of the vector in turn. Inside
the body of the loop, we see a slight variation on the min/max algorithm we learned
in Chapter 7: instead of keeping the smallest value in the accumulator, we keep the
index of the smallest value. Once the loop ends, the accumulator has the index of
the smallest value in the rest of the vector; and if that’s even smaller than the value
currently at the target index, we swap it. Technically, the only thing here that is
new is the swap function itself: you do need to #include <utility> to use it but swap

it causes the two given values to change places.

To get a better feel for how it works, trace through the algorithm with a given set
of starting values, such as {6, 3, 2, 5, 4}—if possible, use physical pieces of paper or
other objects (playing cards are great for this) to give you a feel for how the values
move around in the vector as the algorithm runs. Why do we init smallestIndex

to targetIndex instead of 0? Why does i start at targetIndex + 1? What does
the algorithm do if the values are already in order? What happens if you run the
algorithm on a vector with just one element? Or no elements?
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13.4 Two-dimensional data

Sometimes it’s the case that data can be best understood as two-dimensional. Per-
haps it consists of measurements of different locations in the world, laid out in a
grid with (x,y) coordinates. Perhaps it’s once-a-month measurements that relate
both to different months in the same year, but also to different years. Whatever
the context, we can think of two-dimensional data as a grid of values that can be
accessed by multiple coordinates, instead of by one single index to mark its position.

There are a few ways to represent 2D data in C++, each with their pros and cons.
The one we’ll work with now is the most flexible, but a little tricky to set up.
The underlying idea here is that if a vector of numbers arranges that data in one
dimension, then a vector of vectors can arrange it in two. That is, use the type
vector<vector<double>> to represent the grid of data.3 As with one-dimensional
data, it is possible to declare-and-init the values directly into the vector; here, we
know that each element of the 2D value is itself a vector of data, so we enclose each
one with curly brackets:

1 vector<vector<double>> grid = {

2 { 3.0, -4.5, 1.0 , 0.75 },

3 { 1.2, 31.4, 0.25, -2.8 }

4 };

Program fragment 13.7

This way of getting values into a vector-of-vectors presents them pretty strongly
as row-based, that is, each single vector contained in the larger grid represents a
horizontal “row” of the grid:

3Some very old C++ compilers required an extra space in the declaration, like so:
vector<vector<double> >. You’ll still see programs floating around online that follow this con-
vention, but the space hasn’t been required since the 2011 standard.
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Figure 13.4: A vector of vectors, viewed as a row-column system

In a row-based model, the first coordinate thus designates the row, and a sec-
ond coordinate would designate the column. For instance, on the above data,
grid.at(0).at(2) would be 1.0, and grid.at(1).at(3) would be −2.8. A nested
loop to iterate through them would be well-advised to use variables with names like
row and col (or column) to make the iteration pattern easier to follow:

1 double sum = 0;

2 for (int row = 0; row < grid.size(); ++row)

3 {

4 for (int col = 0; col < grid.at(row).size(); ++col)

5 {

6 sum += grid.at(row).at(col);

7 }

8 }

Program fragment 13.8

Note the upper bound on the inner loop: the size of the whole grid is in this case
the number of rows, 2, so to get the number of columns we need to ask the whole
row vector how many values it has.

Another way to set up 2D data is with the contents being vertical; the first coordinate
chooses an “x value” and the second is a “y value” showing how far down to go:
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Figure 13.5: A vector of vectors, viewed as an x-y system

How do you tell which way to interpret the 2D value in a particular program? Only
by documentation and context, because both are valid ways to interpret the data.
Setting up an x-y-based 2D value most easily accomplished if you know in advance
how big it will be, but it’s still a bit of a multi-part process:

1 vector<vector<int>> xyGrid = {};

2 xyGrid.resize(width);

3 for (int x = 0; x < width; ++x)

4 {

5 xyGrid.at(x).resize(height);

6 }

Program fragment 13.9: Assumes width and height are already defined

The initial value of the grid is completely empty, so we need to size it according
to its first coordinate (the width, corresponding to the x value). But the .resize .resize

method only sizes the vector and just leaves all values at their defaults, so even
then, the individual vertical vectors at each x coordinate are themselves empty, and
so we need to access each one of them and resize it to its intended height! At this
point, the grid is a width×height 2D value whose individual int elements are all set
to their default value, zero. Next, we would read in or generate the values to go in
each position (or perhaps our problem really does want everything to start out at
zero, conveniently).

(The resizing pattern for setting up a vector-of-vectors is not only for the x-y
systems—but if you use it for a row-column system, remember that if row is the
first coordinate, then height is the first bound!)
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Yet another way to set up a 2D value is if you’re reading data from the keyboard
or a text file and don’t know in advance how large it is. If the data is presented one
row at a time, you can read it in and add it, one row at a time, using .push back

to add entire rows:

1 vector<vector<double>> grid = {}; // no rows yet

2 string line;

3 while (cin >> line) // assumes no spaces in line!

4 {

5 vector<double> row_data = {}; // no numbers yet

6

7 /* code to process line to put values into row_data */

8

9 grid.push_back(row_data);

10 }

Program fragment 13.10

(Unless the data is single individual characters for some reason, the processing to
turn one line of characters into a vector of data is a little tricky for a short example,
so we’re handwaving past that part here.)

Practice problems

1. Define a variable with a grid of integers that has 4 rows and 8 columns. Write
a loop that finds the smallest number in each row. Try doing it both with and
without writing a helper function.

2. Build a 11x11 grid that holds the value of the expression 2x+ y
2 at each integer

coordinate. After building the grid, print the grid.

3. Read a word-search grid from the keyboard or a file that contains nothing but
uppercase letters; in the input, each line will be entered with no spaces, just
the letters, e.g.

THATR

HISOU

EREWO

REEDY

After reading the whole grid, print it back out, spaced so that individual letters
are easier to see, e.g.
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T H A T R

H I S O U

E R E W O

R E E D Y



Chapter 14

Strings, characters, and
formatting

20230417-2200

In this chapter, we’ll revisit strings and string processing for a little bit of a deeper
dive into how they work and how they’re represented.

14.1 Special characters

Up to this point, if we wanted to indicate that something we printed should move to
the start of the next line, we used endl, which was not exactly a string or character,
just a special keyword that could be inserted into an output stream:

1 cout << "One line of output" << endl;

2 cout << "Second" << endl << "and third lines" << endl;

Program fragment 14.1

A more compact and versatile (and occasionally more efficient) way to do this is to
make use of a special “newline” character, built in to ASCII, whose job is not to
print a visible letter or mark on the screen, but rather as a control character that control character
indicates to a terminal, browser, or device that it’s time to start a new line. In other
words, it has exactly the same role as endl, but since it is officially a character it
can be stored in char variables and as parts of strings.

We can’t simply type the newline into a string by pressing the Enter key, though;
you may have already noticed that code like this will yield a syntax error:

126
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1 cout << "One line of output

2 Second

3 and third lines

4 ";

Program fragment 14.2: Error!

Instead, we substitute a special sequence “\n” whenever we want a newline charac-
ter:

1 cout << "One line of output\nSecond\nand third lines\n";

Program fragment 14.3: Error!

Although in the program file itself we press two keys and type two characters, a
backslash1 and the lowercase letter N, this is understood by the compiler as repre-
senting a single character in the string. The string "hi\n" is three characters long,
not four.

You can even use it in a character literal:

1 char newline = '\n';

Program fragment 14.4

The compiler will complain if you put multiple characters between single-quotes
(because they designate a single char literal value) but because the backslash-then-
N combination represents just one character (a control character) that’s fine.

There are a few other characters you can enter into strings and character literals
using this backslash notation:

1It’s important that this is a backslash, not a forward slash. A forward slash is used for division
operations and comments. To keep them straight, remember that if someone was walking left to
right on your page like the words do, a forward slash would be them leaning forward: / and a
backslash would be them leaning back: \
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\n Newline
\t Tab
\' Single quote
\" Double quote
\\ Backslash

Figure 14.1: Some backslash-based characters

The tab character is sometimes useful for lining up output on the screen—on most
terminals, by default, it inserts 1-8 visual spaces to line up with other tabbed content.
The others on this list are not because the characters are ASCII control characters,
but because they would normally indicate other things: this is the only easy way to
include a double-quote character into a string literal!

1 cout << "She said, \"Hello!\", and then walked out.\n";

Program fragment 14.5

14.2 Formatting

Sometimes it’s useful to make your program’s output visually line up into columns.
This is less important than it once was (in the days when financial reports were
printed on line printers and a lot of business software was in text windows), which
is why it’s been put off to Chapter 14 and is just a tiny section, but it can be handy.
The simplest way to line up columns involves tab characters, but they only let you
line up on 8-character boundaries and are of little help when your output varies in
width by more than that.

Giving a little more control, C++ provides stream manipulators as a way to indicate stream manipulators
to an output stream (such as cout, though stay tuned for some other options) that
the very next output should use a specific number of characters, and to add extra
spaces if necessary to make it line up. For instance, assume the following short
example vector:
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1 struct Measure

2 {

3 string item;

4 int quantity;

5 double measurement;

6 };

7 vector<Measure> data = {

8 Measure{"first", 32, 3.0625},

9 Measure{"long-named second", 4, 17.5},

10 Measure{"third", 1024, 2.125}

11 };

Program fragment 14.6: Data for the next few examples

The following loop just prints out the data without formatting (output shown below)

for (Measure m : data)

{

cout << m.item << ' '

<< m.quantity << ' '

<< m.measurement << endl;

}

Prints:
first 32 3.0625

long-named second 4 17.5

third 1024 2.125

Figure 14.2: Basic output

But if we use the setw manipulator (requires the header <iomanip>) to set the setw

<iomanip>“width” that each piece is printed in, the necessary spaces are added:
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for (Measure m : data)

{

cout << setw(20) << m.item

<< setw(6) << m.quantity

<< setw(8) << m.measurement << endl;

}

Prints:
first 32 3.0625

long-named second 4 17.5

third 1024 2.125

Figure 14.3: Formatted

That’s a bit more legible, but the default right-justification is a little weird for labels,
which we can fix with another manipulator:

for (Measure m : data)

{

cout << left << setw(20) << m.item

<< right << setw(6) << m.quantity

<< setw(8) << m.measurement << endl;

}

Prints:
first 32 3.0625

long-named second 4 17.5

third 1024 2.125

Figure 14.4: Left- and right-justified

Note that the use of left applies to all future stream output until it’s reset with left

the use of right. right

Finally, we might want to tidy up that column with the floating-point numbers.
Often when we print decimals, we want the decimal points to line up, and we
want them to show the same number of digits after the decimal point even if they
end in zeroes. For this we combine the setprecision manipulator and the fixed setprecision

fixed
manipulator, which together indicate we want the number of digits to consistently
print after the decimal:
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for (Measure m : data)

{

cout << left << setw(20) << m.item

<< right << setw(6) << m.quantity

<< setprecision(3) << fixed << setw(8) << m.measurement << endl;

}

Prints:
first 32 3.062

long-named second 4 17.500

third 1024 2.125

Figure 14.5: Decimal precision

14.3 Line-based input and streams

We’ve known since the earliest days of the course that when we read in strings, we
only get one “word” at a time. That’s because the >> operator, when presented
with a string variable, is whitespace-delimited , meaning that it stops whenever it whitespace-delimited
sees any of the whitespace characters (space, tab, or newline). But there is a way to
read an entire line all at once: a function called getline. It takes two parameters, getline

exactly the same parameters in the same order as the >> operator:

1 string word, line;

2 cin >> word;

3 getline(cin, line);

Program fragment 14.7

In fact, a call to the getline function can be used as a drop-in replacement anyplace
that we’ve seen >> used, including as a loop condition:

1 string line;

2 while (getline(cin, line))

3 {

4 cout << line.at(0) << endl;

5 }

Program fragment 14.8: Print the first letter of each line
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14.3.1 Warning: mixing >> and getline

If your program reads nothing but string variables, and all those strings are meant
to be typed in one per line, then you could simply replace all uses of >> with calls
to getline, and the program would work identically except that now those strings
could have spaces in them (as indeed most kinds of string input, like names or
countries or addresses or sentences, can have).

But if the input format requires a mix of strings and numbers, or a mix of line-
based strings and single-word strings, simply mixing >> and getline will lead to
some subtle bugs unless you counteract them. The following code has a clear intent
but it will not work as designed:

1 int num1, num2;

2 cin >> num1;

3 cin >> num2;

4

5 string firstline, secondline;

6 getline(cin, firstline);

7 getline(cin, secondline);

8

9 cout << num1 << ' ' << num2 << endl;

10 cout << firstline << endl << secondline << endl;

Program fragment 14.9: Subtle input bug

If you run the program, and type a number (and hit enter) and another (and hit
enter) and then some words (and hit enter), it won’t even wait for a second line of
words, and it will print the words you typed as the second line of input. (Try it!)
Why would that be?

Remember that reading input from cin always involves reading up to a point and
then stopping, leaving the rest of the input for the next access of cin. It turns out
that all of the >> input techniques, regardless of what type they’re reading, skip
over any initial whitespace, then read the number or char or word they’re looking
for, and then stop as soon as they find more whitespace—leaving the whitespace to
be read by the next cin access. But getline always reads from wherever it starts,
up to and including the next newline character (or the end of the input). That’s a
problem when a >> is followed by a getline. Suppose you tried the following input
for that program:
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42 -127

blah blah blah

additional stuff

Figure 14.6: Possible intended input for that program

This shows the “remaining input in cin” after each of the input statements:

Before input:
42 -127\nblah blah blah\nadditionalstuff\n

After first input cin >> num1 reads 42:
-127\nblah blah blah\nadditionalstuff\n

After second input cin >> num2 skips the space and reads −127:
\nblah blah blah\nadditionalstuff\n

After third input getline gets only the newline:
blah blah blah\nadditionalstuff\n

Still waiting in cin after fourth input:
additionalstuff\n

Figure 14.7: As the input proceeds

This will be a problem in any program that needs to mix use of >> and getline.
There are a few solutions that involve consuming the “extra” newline when you
switch from >> to getline, but in many ways the cleaner solution involves only
using getline for reading from cin, and then further processing any lines that have
numbers or multiple words that need breaking up. One way to do that is to use
streams, as demonstrated in the next section.

14.4 Streams

We’ve occasionally referred to cin and cout as streams (and it’s right there in the streams
name of the header file <iostream>), but now we’ll see that the particular power
of the stream concept is that they aren’t the only streams we can use, and once we
create a stream, it behaves just like cin or cout.

First, file streams. Instead of reading from the keyboard and printing to the screen
(or using external operating system features to redirect them), sometimes we want
to read or write an actual file on the hard drive. Type some words in a file called
“sample.txt” and then the following code will read them and print them back, one
per line:
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1 #include <iostream>

2 #include <fstream>

3 using namespace std;

4

5 int main()

6 {

7 ifstream file_in = ifstream{"sample.txt"};

8

9 string word;

10 while (file_in >> word)

11 {

12 cout << word << endl;

13 }

14

15 return 0;

16 }

Program fragment 14.10

Note that it requires the use of the <fstream> header, and that the type of the
variable is ifstream (that is, an input file stream); but the actual file stream is input file stream
a value stored in a variable and uses the exact syntax we’ve always used for that.
The filename used to create the ifstream value need not be a string literal, but
could instead be a string variable or any other expression that produces a string, as
long as it’s an actual filename that exists. From then on, the stream variable (here
file in) can be used exactly as cin would be (including with getline).

The pattern is similar for output file streams, just using the ofstream type: output file streams

1 ofstream file_out = ofstream{"data.txt"};

2

3 for (int val : values)

4 {

5 file_out << val << endl;

6 }

Program fragment 14.11: Printing to a file

For output files, the file need not already exist (and in fact if it does exist it will be
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overwritten). Once created, any output file stream can be used in exactly the way
that you would use cout.

Another type of stream that you can use is the string stream, which lets you treat a string stream
string inside your program as if it’s a tiny little file that you can read from or write
two. You’ll need the <sstream> header, and then you can do this:

1 istringstream str_in = istringstream{"some words to read"};

2 string word;

3 while (str_in >> word)

4 {

5 cout << word << endl;

6 }

Program fragment 14.12

which would print the four words from the stream, each on their separate line. They
are also useful for resolving situations where line-based input includes numbers or
otherwise requires processing, as in the problematic example in the previous section:

1 string templine;

2 getline(cin, templine);

3 istringstream numbers = istringstream{templine};

4

5 int num1, num2;

6 numbers >> num1 >> num2;

7

8 string firstline, secondline;

9 getline(cin, firstline);

10 getline(cin, secondline);

11

12 cout << num1 << ' ' << num2 << endl;

13 cout << firstline << endl << secondline << endl;

Program fragment 14.13: Fixed input bug using stringstreams

Since all accesses of cin use getline, the newlines are handled uniformly, and
while templine is still a string, it can be processed into the numbers by way of an
istringstream.
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In the other direction, we can use string streams as if they were a tiny output file
in order to build strings using << and other stream-based tools, without actually
printing them to the screen; once we’ve “output” everything we want into the stream,
we use the .str method of the stream to access the resulting string:

1 string format_string (GroceryItem item)

2 {

3 ostringstream result = ostringstream{}; // initially empty

4 result << left << setw(20) << item.name;

5 result << right << setw(4) << item.quantity;

6 result << fixed << setprecision(2) << setw(6) << item.price;

7 return result.str();

8 }

Program fragment 14.14

14.5 C strings

The string type that we’ve been using is not the only string-representing type in
C++. Dating from its predecessor language C, there also a type const char* (or const char*

just char*, read aloud as “tchar star”), which is also known as a C string due to its C string
provenance. It is still used in some C++ programs when they need to interact with
libraries designed for C—and any time you use a string literal. As we mentioned back
in Chapter 6, string methods don’t work on string literals, and the reason is that the
actual type of every string literal is actually const char*. In most circumstances
the compiler is able to automatically convert the C strings into C++ string values
as needed, but in method calls, concatenations, and a few other places, it needs a
little help. You can always explicitly construct the string object, just as we might
do with a struct value we’d defined ourselves, and when explicitly constructed as a
string you can use methods freely:

string{"This works"}.length()

Moving in the other direction, if you do interact with a library that is designed
to interoperate with both C and C++ (and maybe also some other languages), it
may expect text-type parameters to be given as const char* rather than string.
Conveniently, there is a string method .c str that does the conversion: .c str

old_library_call(word.c_str())
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Why did the designers of C++ invent a new string type rather than sticking with
the old one? Put simply, the old way is pretty primitive. The value of a C string is
nothing but an address in memory where the text begins—it doesn’t have any other
information about the string, not even how many characters long it is! The only way
to find the end of the string is to scan forward until you find a special null character , null character
a byte with all zero-bits that doesn’t correspond to any other ASCII value. (That’s
different from '0', which is the character for the digit zero. To represent the null
character, use the number 0 by itself, or explicitly say '\0'.) If it’s a long string,
just asking how long it is requires computational work to scan for the end. If a bug
in a program misplaces the null character, the string can appear to be much longer
than it should be, and such an error may give rise to a buffer overflow , a serious buffer overflow
security problem.

There are still times when you need to use a C string, and you definitely should
know they’re out there (not least because it will make certain error messages make
more sense). But all else equal, you should probably continue using C++ string

values wherever possible.
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An older style of formatted output, a little less flexible than stream manipulators
but much more compact, uses the old C function printf (which stands for “print printf

formatted”). To access it, include the <cstdio> header (for C standard I/O). It has
an unusual prototype that is written

int printf (const char* format, ...);

because while it must have a first “format string” parameter, it can have any number
of parameters after that—depending on the contents of the format string.

The format string can contain arbitrary characters, which will be printed exactly
as they are except when the special percent-sign marker is used to indicate a “fill-
in-the-blank” placeholder. (This usage of the percent sign has nothing to do with
either percentages or the mod operator.) In its most simple form, the percent sign
is followed by a single letter indicating what type of value it will be replaced with:

The sign is replaced with a... whose type is...
%s string const char*

%f floating-point number double

%d decimal (base 10) integer int

%c character char

Figure 14.8: Conversion letters for printf

Each subsequent parameter then is used to fill in the placeholders, in order. At
its simplest, you can thus lay out a line to be printed in a visually readable form,
without being cluttered by the expressions used to access the values, as in this
statement:

138
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1 printf ("Product: %s (%d @$%f each)\n",

2 item.name.c_str(), item.quantity, item.price);

Program fragment 14.15

(note the required .c str(), because printf needs a const char*), which in a loop
might print something like

Product: can of soup (10 @$1.39 each)

Product: 12-pack of soda (3 @$5.49 each)

Product: jar of peaches (1 @$2.5 each)

Figure 14.9: Output

which could instead be generated with the equivalent

1 cout << "Product: " << item.name

2 << " (" << item.quantity

3 << " @$" << item.price << " each)\n";

Program fragment 14.16

But just as with our << output we could insert some manipulators to control the
formatting, printf lets us insert additional specifications between the percent sign
and the conversion letter to give information about left/right justification, field
width, and decimal precision. The revised print statement

1 printf ("Product: %-20s (%2d @$%5.2f each)\n",

2 item.name.c_str(), item.quantity, item.price);

Program fragment 14.17

would, given the same data loop as the earlier example, yield the following output:
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Product: can of soup (10 @$ 1.39 each)

Product: 12-pack of soda ( 3 @$ 5.49 each)

Product: jar of peaches ( 1 @$ 2.50 each)

Figure 14.10: Output

and corresponds to the following stream output statement:

1 cout << "Product: " << left << setw(20) << item.name

2 << " (" << right << setw(2) << item.quantity

3 << " @$" << setw(5) << fixed << setprecision(2) << item.price

4 << " each)\n";

Program fragment 14.18

A lot of software out there (including a number of other programming languages!)
will use printf-style output formatting, so it’s important to have at least a passing
familiarity with it. There are also a lot of other options for the format string that
are not detailed here, if you’re interested in diving deeper.
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Arrays and pointers
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In this chapter we’ll see a little more of the internals behind how complex data
can be stored, and how data is organised in memory. We’ll talk about two related
concepts (arrays and pointers) and a lot of new-to-us syntax that C++ inherited from
C; both can be used in modern C++, and sometimes are (especially when interacting
with older code), but many of their most common use-cases have been largely taken
over by other language features like strings, vectors, and references, which you’ve
seen, and managed pointers, which you haven’t. It’s important to know about these
concepts and recognise the syntax, but a true deep-dive into the use of arrays and
pointers is outside the scope of this book.

15.1 Arrays

An array in C++ is a bit like a vector: it holds a sequence of zero or more values array
of the same type. However, relative to a vector, an array has several important
limitations:

� An array’s capacity , the number of elements it could eventually hold, is spec- capacity
ified at the moment the array is declared, and cannot be changed later

� Arrays do not have any associated fields or methods, so we can’t call .size
or similar to get info about the array

� In general, at any moment the number of values stored in the array is less than
the max capacity of the array, so we have to think about (and track) size, the size
number of actually-stored values in the array, separately from capacity

� Because they don’t know their own size, they also can’t prevent the user from
accessing memory after the end of the array (a buffer overrun, a common buffer overrun

141
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source of security vulnerabilities and irritating run-time errors)

The main upside to using arrays is that you have more fine-grained control over
exactly how many bytes of memory you are using, but in modern C++ code this
is rarely of much benefit when set against the limitations. Unless you have a very
specific reason to choose arrays, vectors are probably a better bet.

15.1.1 Syntax

The syntax for declaring an array breaks a rule established in Chapter 4: the type of
the variable does include the fact that it’s an array, but the order of the statements
is that the type of the contents comes before the variable name, but the array part
comes after, usually also with the array’s capacity as a compile-time constant. All
three of the following statements declare an array of int with the capacity for 5
values:

1 int values[5];

2 int others[5] = {8, 7};

3 int more[] = {9, 8, 7, 6, 5};

Program fragment 15.1

The square brackets may only be left empty if the array is immediately initialised,
and the capacity is set according to the number of values in the array. If the capacity
is explicitly given, and there is no initialisation or only some of the values are
provided, the remaining cells of the array are not initialised,1 and contain whatever
bits happened to already be in those bytes of memory. If you want them to have
a particular value (such as zero), make sure to write code to explicitly make that
happen.

Functions that take arrays as parameters may either include or omit the capacity,
but if present the capacity must be a (correct!) compile-time constant. Since arrays
don’t “know” their own size, array parameters are often accompanied by separate
parameters to track the number of values they hold. For instance:

1This statement is a slight simplification; but don’t count on array values being initialised.
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1 int sum_nums (int values[], int how_many)

2 { /* ... details omitted ... */ }

3

4 double average (double weights[20], int n)

5 { /* ... details omitted ... */ }

Program fragment 15.2

The syntax with square brackets is also used to access the individual values of the
array. In this case, the square brackets contain an expression that evaluates to an
int index that indicates which position to access or assign a value to:

1 cout << values[2] << endl;

2

3 for (int i = 0; i < n; ++i)

4 {

5 weights[i] = 0.0;

6 }

Program fragment 15.3

15.1.2 Square brackets on vectors and strings

Now is probably a good time to point out that the array syntax for accessing elements
can also be used on most other collection types, including vectors and strings:

1 string greeting = "Hello!\n";

2 cout << greeting.at(0) << endl;

3 cout << greeting[0] << endl;

4

5 vec.at(i) = value;

6 vec[i] = value;

Program fragment 15.4

The difference is not purely aesthetic, though. Using the array syntax says some-
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thing like “pretend this is actually an array, and if I provide an index that’s out of
range, just access it anyway”, while the .at syntax that we’ve been using will first
verify that the index is a valid one. That can help catch some subtle bugs, by halting
the program and alerting you to the bad access rather than blindly stumbling on.
Consider these two incorrect loops over a vector named nums:

1 int product1 = 1;

2 for (int i = 0; i <= nums.size(); ++i)

3 {

4 product1 *= nums[i];

5 }

6

7 int product2 = 1;

8 for (int i = 0; i <= nums.size(); ++i)

9 {

10 product2 *= nums.at(i);

11 }

Program fragment 15.5

The first one runs and will in general produce an incorrect answer (often zero,
though not always). If you didn’t test enough you might not even notice the error,
and debugging it might be challenging. The second one runs and halts, every time,
notifying you that i is outside the valid range for .at (and specifically, that it’s
equal to the size of the vector), which helps narrow your debugging focus, correctly,
to the loop bound.

But you’ll see an awful lot of C++ code out there in the real world that uses square
brackets. As long as you’re careful to check your bounds, that will work just fine.

15.2 Pointers

A pointer , in C++, is literally just an address in memory, a virtual arrow pointing pointer
to some particular byte that says “some relevant value is stored in that byte (and
subsequent bytes)”. Because more than one arrow can point at the same spot,
pointers provide a way for different parts of a program to update and access the
same value—much as with references, but more general. Pointers also can be used
to express (and update!) relationships between objects that are more complex than
“direct sequence of values” and may not even be known in advance.

A reference, which we discussed in Chapter 12, can also be thought of as an arrow,
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permanently connecting the reference name to the originally-declared value that it
refers to. By contrast, a pointer is itself a value; it is best illustrated with one box
that models the pointer itself, whose value is an arrow (representing the memory
address); and then a separate box that the arrow points to, containing the pointed-to
value.

Figure 15.1: An int, an int reference, and an int pointer

Because they can point to values that are non-local (and may not have any name at
all), pointers are often used as a way to establish values and objects that will usefully
continue to exist after the current function is completed—as long as someone still
has a pointer to that value.

15.2.1 Syntax

Declaring a variable to be of a pointer type requires placing an asterisk after the
name of the type it will point to.2 There are a number of ways to get a pointer value
to assign to a pointer variable, but the most straightforward for us will involve the
keyword new: new

1 int number = int{23}; // or just ... = 23;

2 int* num_ptr = new int{23};

3

4 string word = string{"example"}; // or ... = "example";

5 string* word_ptr = new string{"also"};

6

7 Location loc = Location{3, 4}; // or ... = {3, 4};

8 Location* loc_ptr = new Location{-5, 12};

Program fragment 15.6

2Important caveat: if you declare your pointer variables like “int* np;” as recommended here,
it’s important to only declare one variable per statement. The statement “int* np, mp;” will not
do what you expect. If you declare multiple variables on a line, there’s additional subtlety that is
outside the scope of this book.
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These examples show three pairs of declare-and-init statements, in each case first
declaring a variable to directly hold a value of the type and second declaring a
variable to hold a pointer to that type. It’s generally possible to skip the int{...}

and string{...} when dealing with regular values, but they are required with new,
and I’ve included them here to show the parallel with other types. They would set
up memory something like this:

Figure 15.2: The above statements, diagrammed

Pointer access, that is, accessing the values that pointers point to, comes in two
flavours. If you want to access the entire value (as is typically the case with simpler
values like strings and numbers), precede the variable name with an asterisk. To
access a field or method of a value through a pointer, replace the period (usually
used for field/method access) with a two-character arrow “->”. ->
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1 cout << number << endl;

2 cout << *num_ptr << endl;

3

4 cout << word << endl;

5 cout << *word_ptr << endl;

6

7 cout << word.length() << endl;

8 cout << word_ptr->length() << endl;

9

10 cout << loc.x << endl;

11 cout << loc_ptr->x << endl;

Program fragment 15.7: Accessing values set up in previous listing

Finally, there are two different kinds of assignment/update that are relevant here:
an assignment to the pointer variable itself will change the arrow and make it point
elsewhere (without affecting the existing value it pointed to, which might have other
things pointing to it). Thus the following statements:

1 num_ptr = new int{-57};

2 *word_ptr = "upd";

3 loc_ptr->x = 8;

Program fragment 15.8

might be diagrammed as follows (former values crossed out with red lines, new values
shown in green):
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Figure 15.3: The above updates, diagrammed

Note, by the way, that the allocated box containing 23 is unchanged and, in this
case, has nothing left pointing to it. The final piece of syntax is that everything
that is allocated with new should, eventually, be de-allocated with delete:

1 delete num_ptr;

2 delete word_ptr;

3 delete loc_ptr;

Program fragment 15.9

But even after doing that, the box with 23 remains allocated memory, and can now
never be deallocated. This is referred to as a memory leak , and if it happens at scale memory leak
it can really slow down a computer. Keep track of your memory and make sure to
use delete when you’re done with it!3

15.3 Arrays as pointers (and vice versa)

As explained in the last two sections, there are differences in how arrays and pointers
are declared, and how they allocated memory; but once created, they can be used

3Or use managed pointers, such as unique ptr or shared ptr, but the details of those are beyond
the scope of the book.
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interchangeably in most contexts. There are two particular ways this comes up most
often: function parameters and value access.

Any function with a parameter specified as an array type can instead be given a
variable (or expression) of the corresponding pointer type. Similarly, a function
whose parameter requires a pointer, can be called with a corresponding array-type
value. To interpret an array as a pointer, we simply treat it as the address of its
first element. To interpret a pointer as an array, we imagine that the value it points
to is just the first in the array of multiple allocated memory locations.

As a consequence of that, the syntax used to access the two is also basically in-
terchangeable. If we understand a value as a pointer, we tend to use the asterisk
to “access that value”, while if we understand it as an array, we use [0] to “ac-
cess the first value”, but as these are precisely the same operation, they’re formally
interchangeable!

1 cout << others[0] << *others << endl; // same value twice

2 cout << *num_ptr << num_ptr[0] << endl; // same value twice

Program fragment 15.10

The most common place you’re likely to see this is when working with C strings. We
learned in the last chapter that they also are known as “char*”, which we now know
as a pointer to char; but if we want to access individual characters in the string
(which doesn’t have an .at method!), we use the square-bracket array notation.

1 char* phrase = "another example";

2 int i = 0;

3 while (phrase[i] != '\0') //keep going until we see the "null character"

4 {

5 cout << phrase[i] << endl;

6 ++i;

7 }

Program fragment 15.11

Though usually declared as a pointer, C strings are virtually always accessed as
arrays.
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15.4 2D arrays

When we talked about two-dimensional data in Chapter ??, we worked with vectors
of vectors, and all the options probably felt a little clunky. Another option would
be to use true arrays, and C++ provides an option that will at first seem obviously
superior; making space for a 2D array of double with 2 rows and 4 columns is done
in just one line:

1 double grid[2][4];

Program fragment 15.12

If we have the exact data at compile time, we can declare-and-init it in the obvious
way:

1 double grid[2][4] = {

2 { 3.0, -4.5, 1.0 , 0.75 },

3 { 1.2, 31.4, 0.25, -2.8 }

4 };

Program fragment 15.13

We could also loop through and set values individually as we read them in, as in
one of the options presented for vectors of vectors.

One reason this won’t work for certain kinds of problems is the same problem as
with one-dimensional arrays: you have to know, at compile time, exactly how large
to make it. If your data is coming in while the program runs, and the grid can be
of different sizes each time (or is just not known in advance), you’d at least need to
allocate a larger-than-needed capacity, and then keep track of the number of rows
and columns, and it starts to seem less appealing.

The other reason that 2D arrays are a bit irritating in C++ is that declaring them
in function parameters requires, again, knowing their size in advance. Recall from
earlier in this chapter that an array parameter can omit the size:
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1 int sum_nums (int values[], int how_many)

2 { /* ... details omitted ... */ }

Program fragment 15.14

But if you tried the seemingly-obvious analogue for 2D arrays, it won’t work:

1 int process_grid (double grid[][], int rows, int cols)

2 { /* ... details omitted ... */ }

Program fragment 15.15: Generates a compiler error

To see why, note that 2D arrays, like arrays in general, are really just pointers to
the start of the space. If we create a 2D array of letters and access it as follows:

1 char grid[3][5] = {

2 { 'A', 'B', 'C', 'D', 'E', 'F' },

3 { 'G', 'H', 'I', 'J', 'K', 'L' },

4 { 'M', 'N', 'O', 'P', 'Q', 'R' }

5 };

6 cout << grid[1][4] << endl; // prints K

Program fragment 15.16

we imagine that it is accessing things like in this diagram, just like in a vector of
vectors:

Figure 15.4: A faulty mental model of the above access
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But in fact, all 18 elements of the 3×6 array are stored in one linear sequence; jump-
ing to the start of “row 1” requires skipping over exactly 6 elements, because there
are 6 elements per row. So this is a better way to think of the access grid[1][4]

when working with a true 2D array:

Figure 15.5: A better model

So the reason the function parameter can’t leave the sizes unspecified is that if it
didn’t know how many columns this 2D array had in it, it wouldn’t know how many
spaces to jump over to get to the start of “row 1”.

The upshot of all of this is, if you’re writing modern C++ code, unless you are
interacting with some old existing code or a C library or something that really
requires 2D arrays as such... probably just use some other data structure (like vectors
of vectors) instead.
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Constructors and other methods
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If you continue to future CS courses, you will learn about the concept of classes—an
extension of structs—and their use in a paradigm known as object-oriented design.
In this chapter, we’ll get a preview of some of those ideas, presenting the idea of a
constructor and talking a little bit about how methods work and are implemented. constructor

16.1 Setting up the data fields

We’ve seen in previous chapters that after a struct type is defined, an instance of a
struct can be created using the typename, curly brackets, and initial values for the
fields.

1 Location quadI = Location{3, 4};

2 Location origin = Location{0, 0};

3

4 // and in a function that returns a Location, maybe:

5 return Location{xval, yval};

Program fragment 16.1: Making some structs

What’s really happening here? The typename indicates to the compiler what struct
type is being used, so it can go look up what the fields are, and what types they
have, so that when specific actual values are provided, the compiler can implement
instructions that will store those values. For the Location type, it knows that the
contents are two int fields named x and y respectively (see definition in Chapter 11),
so it can accept two int values and use them to fill in the boxes, as shown:

153
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Figure 16.1: Memory model of some of the data in that code segment

But what if the way we acquired the data for a struct was going to usually be in
some slightly different format? Consider the following struct definition:

1 struct Car

2 {

3 string make;

4 string model;

5 int miles;

6 };

Program fragment 16.2

Let’s say that the general case for Car values would be that we were provided
a single string with both the make and the model, like "Mini Cooper" or "Jeep

Grand Cherokee". It would certainly be possible to write a function that took a
string like that and broke it up into make and model and returned a Car object,
but what if we wanted to write something like what’s on the left to produce this
corresponding model:



CHAPTER 16. CONSTRUCTORS AND OTHER METHODS 155

Figure 16.2: Intended data stored

We can make that happen! By including a constructor , a function-like definition constructor
inside the struct, we can write code to provide the initial values for every field in
the struct. The main differences between a constructor and a regular function are:

� They are written1 inside the struct definition

� The “function name” is the same as the struct typename

� There is no return type, not even void

� Between the header and the body of the constructor, each field is given its
initial value (which may be further updated in the body)

So in this case, our constructor might be written as follows:

1 Car (string make_model) :

2 make{""}, model{""}, miles{0}

3 {

4 int spc = make_model.find(' ');

5 make = make_model.substr(0, spc);

6 model = make_model.substr(spc+1);

7 }

Program fragment 16.3

Note that the fields are not re-declared inside the constructor: we are still inside
the curly brackets of the overall struct, so the field definitions are “in scope” and
we can refer to and update them.

1or at least declared; this chapter is an introduction to constructors and will present only a
portion of how they can be written and used
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Note that once any constructor is defined for a struct, C++ no longer provides
the automatic ability to simply provide each field’s value, so with only the above
constructor definition, if we still wrote

1 Car used_mustang = Car{"Ford", "Mustang", 93205};

Program fragment 16.4

the compiler would reject that as an error. The good news is, we can provide
as many distinct constructors as we want, as long as they are each have different
number/type of parameters. In this case, we could add

1 Car (string mk, string mod, int mls) :

2 make{mk}, model{mod}, miles{mls}

3 {

4 }

Program fragment 16.5

which, when I provide it with two strings and an int, behaves exactly like the auto-
matic version: it sets the value of each field to the value of the provided arguments,
in order, and then does nothing further to modify them. Many constructors will
look roughly like this; the initialisers in the second line are able to make use of any
of the provided named parameters, or compile-time constants, or some combination
thereof, and the body of the constructor only needs to include additional code if
there is additional computation to be done to set up the field values.

Putting that all together, here is the full struct definition:



CHAPTER 16. CONSTRUCTORS AND OTHER METHODS 157

1 struct Car

2 {

3 string make;

4 string model;

5 int miles;

6

7 Car (string make_model) :

8 make{""}, model{""}, miles{0}

9 {

10 int spc = make_model.find(' ');

11 make = make_model.substr(0, spc);

12 model = make_model.substr(spc+1);

13 }

14

15 Car (string mk, string mod, int mls) :

16 make{mk}, model{mod}, miles{mls}

17 {

18 }

19 };

Program fragment 16.6

And some examples that show how the different constructors get called:

1 Car mini = Car{"Mini Cooper"};

2 Car used_mustang = Car{"Ford", "Mustang", 93205};

Program fragment 16.7

16.2 A few future strands to explore

This is where we’ll wrap up the course, but having introduced constructors, we can
close with a few notes about what might come next:

� Once you start writing explicit constructors, you can call them as if they
were functions, using parentheses instead of curly brackets: Car("Jeep Grand

Cherokee"). Using the parentheses won’t work if you’re relying on the implicit
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constructors as we did with Location and other structs. (In pre-2011 versions
of C++, parens were the only way to call a constructor, and there is still a lot
of new code written in this older style.)

� In addition to constructors, you can write code that is even more function-
like (with a return type, a different name, and no list of initial values for
fields) inside the struct definition. In fact, it will look exactly like a function
definition except that it can refer to the struct fields that are declared earlier
in the struct. That’s how you define your own methods, which you can then methods
call on your own objects just like calling .substr or .push back or the other
methods we’ve learned for strings and vectors.

� Once you get to writing your own methods, you open the possibility of data
fields that get an initial value in the constructor, are modified and accessed
by other methods, and that in fact you don’t want to access except by the
various methods. This is referred to as private data, and access control is an private

access control
important concept in software engineering.

� As the number of methods increases, it becomes increasingly unwieldy to put
all their definitions in the .h file where the struct is defined; there is additional
syntax that lets you merely declare the methods inside the struct definition,
and then fully define the methods in a corresponding .cpp file, just as we’ve
done for other kinds of functions.

� If you’re doing all of that, you’re probably ready to write your types as classes classes
instead of structs, and the paradigm you’re writing in would then be properly
referred to as object-oriented programming or just OOP . object-oriented programming

OOP
That’s all, folks!
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