
CMSC160 Intro to Algorithmic Design Blaheta

Lab 11
Sorting

17 November 2015

This week we’ll continue working on the idea of putting values in order—
sorting—and what has to be done to accomplish this. The “drill” is getting
some bookkeeping out of the way so that we can dive right into the sorting
algorithms during lab.

Drill: Verifying sortedness

1. Start files sorting.h and sorting.cpp with a function is in order

that takes a vector<string> parameter and is intended (eventually)
to determine whether the given vector is in sorted order or not. For
now, though, just have it always return false. Make sure this much
compiles by running

compile -c sorting.cpp

which, again, runs the compiler without running the linker (since we
haven’t defined a main function yet). (As always, try to compile as
often as is reasonable, and start running your code as soon as it’s
feasible to do so.)

2. Write another program file run sort.cpp that has a main function
that reads lines from cin as long as there are any to be read, and puts
them in a vector; and once it’s done reading them, it calls is in order

on that vector and prints the result. (Remember that that function
is so far only returning false, and false prints as zero, so it’s ok and
expected that your program will just print zero regardless of its input!)

3. Start a unit test file test sorting.u that will test whether is in order

works correctly. Use the test stat functions.u file from Lab 6 as a
model (on page 4 of the lab handout)—in this case the vector should
be vector<string> rather than vector<double>, and should contain
examples of string rather than examples of double, and you should
have examples of vectors that are in order and vectors that aren’t in
order, to effectively test the function. In the actual test cases, you’ll
have lines that look something like this:



CMSC160 Lab 11 17 November 2015

check (is_in_order(vec4)) expect true;

assuming you have a vector named vec4 (you should probably pick
a better name) and it is already in order. If it weren’t in order, you
would expect false instead.

If you have test cases that are meaningfully different, you can put
them in separate test blocks if you like. Just make sure they’re all
part of the same test suite block (there should be only one of those
for the whole file).

4. Return to sorting.cpp and edit is in order to do a little bit of work.
If the given vector is of size 1 or shorter, immediately return true. If
it’s longer, compare (using the regular <= operator) the values of the
first two elements of the given vector, and if the second is smaller than
the first, return false; otherwise return true. Compile and run your
test cases. Do they all succeed at this point? Should they? If all your
tests succeed, continue to step 5. If any fail, continue to step 6.

5. If all your tests succeed in spite of the fact that you know your imple-
mentation of is in order is incomplete (it only compares two items),
then that means your test cases aren’t comprehensive enough. Add
a test case that will catch this incompletely-implemented function;
and compile it and run the test and see the test fail, indicating that
is in order isn’t done yet. Then continue to step 6.

6. At least one test is failing, so you have more work to do with is in order.
Specifically, loop through indices and compare every adjacent pair in
the vector to see if they’re out of order. If you find an out-of-order
pair, return false. If you get to the end of loop without finding an
out-of-order pair, then you can return true.

7. If at any point you run the tests and they pass even though you’re not
done, go back to step 5: add a test case to verify whatever you forgot
to check.

I’ll be circulating around the lab to answer questions. If you’re stuck on
some part of the drill, ask me about that (and while you’re waiting for me
to get to you, look at the next sections about processes). If you’re not stuck
but haven’t finished the drill, work on that now. If you’re done with the
drill, continue on to the next section.

2



CMSC160 Lab 11 17 November 2015

Command line FOTD: Processes

In a terminal window, type

ps

and hit enter. This gives you a list of all processes running “inside” this
terminal at this moment. One is bash, the command line shell itself; and
the ps command itself is running, or rather, was running at the time the list
was put together.

If you open another terminal window and run ps again, the output should be
similar, but with different numbers in the first column (“PID”) and second
column (“TTY”). Run ps a third time, in either window, and you should
notice that compared to the previous run, the PID for bash is the same but
the PID for ps is different. That’s because the same command shell is still
running, but it was a new ps process each time; each new process gets its own
unique process ID. Within a given window, the TTY values will remain the
same—TTY is short for “teletype” or “teletypewriter”, the original terminal,
and indicates which terminal window is running the process.

Now type

ps -u username

except with your own login name there. This shows you all processes on
this machine being run under your username. There are a bunch, because
(if you’ve been following instructions) you have at least two windows open,
and among the list you should see the bash processes you saw before (still
associated with their same tty) and the current ps process.

Find the pid of the bash process in the other window. Type

kill XXXX

except replacing XXXX with the process’s pid. This sends a “hang up” signal
to that process, which (if it is well-behaved) will then quit.1 You can use
ps and kill together to cancel runaway processes, among other things. If
a process is recalcitrant and ignores the interrupt, you can try

1Historically, this signal was invented to inform running processes that their user’s
connection had died, which in most cases meant the process should clean up after itself
and then terminate.

3



CMSC160 Lab 11 17 November 2015

kill -9 XXXX

which sends the process an unignorable “kill” signal. It’s always better to
try the hangup signal first, as it gives the process a chance to close any open
files or save backups as appropriate.

While a process is running (in the foreground, as will be described below),
hitting Ctrl-C is usually equivalent to sending the process a hangup signal.
This doesn’t apply to big text applications like Vim (or nearly any GUI app,
once you start using those), but does apply to any C++ program you write.

Job control

Most command-line processes run by default in the “foreground”. That
means that when you execute the command, the shell waits for it to finish
before giving you a prompt as to what to do next. There are two ways for
processes associated with a terminal to not be in the foreground: suspending
them and backgrounding them.

Most of you have seen accidentally how to suspend a process. In most
situations, if you hit Ctrl-Z while a process (such as vim) is running, it
will suspend itself. Suspending it makes it pause and returns you to the
command line, but the process is still in memory, and can be reactivated.
Try it: run vim foo (or whatever) and then hit Ctrl-Z. On the command
line type

jobs

and you’ll get a listing of non-foreground processes. You can put it back in
the foreground by typing

fg

at this point. Do so, but then suspend it again.

The other sort of non-foreground process is a background process. That
means that it’s actually still running, but you can still use the command
line in the meantime. One way to do this is when you execute a command.
If you type

sleep 5

4



CMSC160 Lab 11 17 November 2015

the command line will be unavailable for the five seconds this process is
running. But if you type

sleep 5 &

it tells you the job number and pid assigned to the process and then lets
you work on the command line. When it finishes, it lets you know it’s done.
Run sleep 5 & again, but this time run jobs right afterward; you should
still have the suspended vim process, plus the running (but backgrounded)
sleep process. In a moment, it finishes.

If you run sleep 5 but then immediately hit Ctrl-Z, it suspends the process
rather than backgrounding it. jobs will tell you two processes are now
suspended. You can restart the process, but in the background, by typing

bg %2

(assuming the job number for the sleep process is [2]). Try this again
(run sleep 5, suspend it, type jobs) and you can instead cancel the process
entirely with

kill %2

Although kill requires an argument (either a pid or a job number with a
percent sign), if you run fg or bg without an argument they will default to
operating on %1, which is why fg by itself worked earlier.

Sorting things

We’ve been talking about various orders for Point values this week in lec-
ture, and the code you’ll write later in the lab will involve sorting string

values, but for now I want to step back and have you work on putting things
in order with actual physical objects—playing cards. For our purposes to-
day we’ll ignore the suit of the card and exclude aces (so we don’t have to
worry if they’re high or low): sorting a list of cards will involve putting it
in increasing order, from 2 to King.

The back page of this handout is a template that represents a vector of four
playing cards, and I’ll be giving you actual playing cards to put into that

5



CMSC160 Lab 11 17 November 2015

“vector”, and move around, and put in order. Pull that sheet off the packet
so you can use it. Whenever I say to test a sorting algorithm, I want you to
test at least three starting configurations:

• the cards are already in increasing order,

• the cards start out in decreasing order (and the sorting process should
reverse them), and

• the cards start out in this order: second-highest, second-lowest, high-
est, lowest. (This order is a good “out of order” order that may help
you understand the sorting process better.)

Also tear off the four index markers (labelled “i”, “pass”, etc) on the bottom
of the rubric page. Use these to keep track of the current values of those
variables when tracing the algorithms. (Not every index marker is used in
every algorithm.)

A first attempt

With that in mind, try running the algorithm represented by the following
pseudocode—which is meant as a first attempt to sort the cards but is not
correct. In this listing, cards refers to the four-element vector represented
by the sheet in front of you.

i ← 1
while i < size of cards

if card at index i is lower than card at index i−1
swap card at index i with card at index i−1

i ← i + 2

Make sure to use the “i” marker to keep track of the value of i as you trace
through the algorithm on the three test cases. In the space below, make
note of which parts of the algorithm seem to work, and what’s missing:



CMSC160 Lab 11 17 November 2015

A revision

Noting that the previous algorithm doesn’t fully sort the cards but does at
least make them “more sorted” than before, someone suggests refining the
algorithm in this way:

pass ← 0
while pass < size of cards

i ← 1
while i < size of cards

if card at index i is lower than card at index i−1
swap card at index i with card at index i−1

i ← i + 2
pass ← pass + 1

Run this version of the algorithm (this time keeping track of the values of
both i and pass) on the test cases.

Does it help? Does it fix the problems you noted on the previous page?
It still doesn’t quite work, but it may suggest a strategy that does; devise
a minor modification you could make to this pseudocode to make it work,
write down the change you made, and test the revised algorithm too to
confirm that it works.

A different approach

Meanwhile, a different person is proposing the following, rather different,
algorithm:

target ← size of cards − 1
while target ≥ 0

i ← 0
highestindex ← 0
while i < size of cards

if card at index i is higher than card at highestindex
highestindex ← i

i ← i + 1
swap card at index highestindex with card at index target
target ← target − 1

7



CMSC160 Lab 11 17 November 2015

As before: run this version of the algorithm (tracking target, highestindex,
and i) on the three test cases; and make note of what parts of the strategy
are successful and what isn’t working:

Devise a modification to this algorithm to make it work, write down the
change you made, and test the revised algorithm to confirm that it works.

Note for handing in: I want to see a (short) note in your readme that
indicates, for the playing card algorithms in this section of the lab, what the
problem was and how you fixed it. This can be just a sentence or two per
algorithm.

Translate it into code

The sorting strategy used in the “first attempt” and “revision” above is
generally called a bubble sort, and the “different approach” is known as a se-
lection sort. What you’ll do now is take your fixed versions of each algorithm,
and translate them into functions called bubble sort and selection sort

that you write in the files you started during the drill. Each of them should
take a vector<string> and compute and return a vector that has the same
values, but in sorted order.

In the test file, the easiest way to write tests for these is to take the re-
turn value of the sorting function and then ask questions about the results,
starting with the function you wrote in the drill:

vector<string> result3 = bubble_sort(vec3);

check (is_in_order(result3)) expect true;

Assuming that vec3 is defined earlier in the test block (whether it’s in order
or not!—but seriously, you should pick a better name for your example than
vec3), this test code says that the result that bubble sort returns should
itself be in order.

8



CMSC160 Lab 11 17 November 2015

You should think about why it isn’t completely sufficient to use is in order

as the only way you test the results of your sort functions—and what other
questions you should ask to more effectively test them.

Note that your tests for selection sort can be almost identical to your
tests for bubble sort, except for calling the other function instead. Also,
don’t forget that you can get the points for good testing even if the thing
they’re testing isn’t working yet (and thus the test “fails”—which is good,
because it reminds you of what work is left to do).

For now, don’t forget to return the sorted result from each function. Later
this week, we’ll see another way that we could set up these functions, and
when we do, you may, but don’t have to, use that instead.

There is a builtin function swap that does just what you’d want it to when
you give it two vector elements that you’d want to swap:

swap (cards[1], cards[3]);

would swap the value at index 1 with the value at index 3, should you be so
inclined.

The program in run sort.cpp should read input and print whether it’s
sorted (as it currently does), then call one of the sort functions you wrote
(either one—if only one works, use that one!), and print the elements in the
resulting vector, and the result of another call to is in order.

9



CMSC160 Lab 11 17 November 2015

Handing in

As usual, use the handin program. Designate this as lab11. Hand it in by
4pm on Monday, 23 November.

Rubric (tentative)

RUBRIC

General
1 Attendance at lab with drill done or question written down
1/2 Readme with clear instructions on compiling, running, testing
1 ...and info on errors in/how to fix playing card sorts
Drill
1 All four files set up correctly, correct header for is in order
1/2 Test cases for is in order include ≥ 1 that fails alg in drill step 4
1 is in order correct
1/2 run sort runs at least as described in drill step 2
Implementation
1 Both sort functions are well-tested in .u file
1 bubble sort implemented to match version on p7
1/2 ...and fixed to work correctly
1 selection sort implemented to match version on p7
1/2 ...and fixed to work correctly
1/2 run sort runs as described on p9


