
CMSC160 Intro to Algorithmic Design Blaheta

Lab 11
Sorting

17 November 2015

This week we’ll continue working on the idea of putting values in order—
sorting—and what has to be done to accomplish this. The “drill” is getting
some bookkeeping out of the way so that we can dive right into the sorting
algorithms during lab.

Drill: Verifying sortedness

1. Start files sorting.h and sorting.cpp with a function is in order

that takes a vector<string> parameter and is intended (eventually)
to determine whether the given vector is in sorted order or not. For
now, though, just have it always return false. Make sure this much
compiles by running

compile -c sorting.cpp

which, again, runs the compiler without running the linker (since we
haven’t defined a main function yet). (As always, try to compile as
often as is reasonable, and start running your code as soon as it’s
feasible to do so.)

2. Write another program file run sort.cpp that has a main function
that reads lines from cin as long as there are any to be read, and puts
them in a vector; and once it’s done reading them, it calls is in order

on that vector and prints the result. (Remember that that function
is so far only returning false, and false prints as zero, so it’s ok and
expected that your program will just print zero regardless of its input!)

3. Start a unit test file test sorting.u that will test whether is in order

works correctly. Use the test stat functions.u file from Lab 6 as a
model (on page 4 of the lab handout)—in this case the vector should
be vector<string> rather than vector<double>, and should contain
examples of string rather than examples of double, and you should
have examples of vectors that are in order and vectors that aren’t in
order, to effectively test the function. In the actual test cases, you’ll
have lines that look something like this:



CMSC160 Lab 11 17 November 2015

check (is_in_order(vec4)) expect true;

assuming you have a vector named vec4 (you should probably pick
a better name) and it is already in order. If it weren’t in order, you
would expect false instead.

If you have test cases that are meaningfully different, you can put
them in separate test blocks if you like. Just make sure they’re all
part of the same test suite block (there should be only one of those
for the whole file).

4. Return to sorting.cpp and edit is in order to do a little bit of work.
If the given vector is of size 1 or shorter, immediately return true. If
it’s longer, compare (using the regular <= operator) the values of the
first two elements of the given vector, and if the second is smaller than
the first, return false; otherwise return true. Compile and run your
test cases. Do they all succeed at this point? Should they? If all your
tests succeed, continue to step 5. If any fail, continue to step 6.

5. If all your tests succeed in spite of the fact that you know your imple-
mentation of is in order is incomplete (it only compares two items),
then that means your test cases aren’t comprehensive enough. Add
a test case that will catch this incompletely-implemented function;
and compile it and run the test and see the test fail, indicating that
is in order isn’t done yet. Then continue to step 6.

6. At least one test is failing, so you have more work to do with is in order.
Specifically, loop through indices and compare every adjacent pair in
the vector to see if they’re out of order. If you find an out-of-order
pair, return false. If you get to the end of loop without finding an
out-of-order pair, then you can return true.

7. If at any point you run the tests and they pass even though you’re not
done, go back to step 5: add a test case to verify whatever you forgot
to check.

2


