CMSC160 Intro to Algorithmic Design Blaheta

Lab 8
Lijnenspel
27 October 2015

The drill this week has two semi-separate parts: one to make sure you
understand the surface task (a puzzle game called Lijnenspel), and the other
part to get you started on using the Matrix stuff we’ve been talking about
in class. You can do the drill bits (ha!) in either order.

Drill 1: Introducing Lijnenspel

Lijnenspel' is a puzzle played on a grid (similar to Sudoku or a crossword
puzzle). In Lijnenspel, the initial grid contains numbers in some of the
squares (as on the left below), and the puzzle solver’s job is to draw hori-
zontal and vertical arrows extending out from the numbers to fill the rest
of the grid. The total length in squares of all the arrows emanating from a
numbered square should add up to that number, as in the solved example
on the right:?

3 3

1 1 v
4 > 9 <4
4 <—4—>‘l'

To be a proper Lijnenspel puzzle, the solution should be unique; and indeed
any such puzzle with a unique solution is possible to solve without guessing
(though the logic may require a bit of work). There are various tactics that
can be applied. For instance, if a particular square is only “reachable” from
one numbered square, there has to be an arrow connecting them; in the
following example, the second square in the top row and the fourth square
in the bottom row are only reachable from the 6—so we could immediately
“spend” six to draw arrows from the 6 to those two squares. That makes

! Also known as “Line Game”, but the authors of the site I pulled examples from are
Dutch, and so publish it under both names. “Lijnenspel” looks cooler, no? It’s pronounced
“LINE-en-spell”.

2This example comes from the description page at http://www.puzzlepicnic.com/
genre?lijnenspel .

CMSC160 Lab 8 27 October 2015

the right column unreachable except from the 4; and this sort of logic can
continue through to complete the puzzle.?

6 A 6
4 —> < 4
4 A 4
1 1 v

To confirm you understand how the Lijnenspel puzzles work, work out at
least the first two on the handout I gave out in class. Compare notes with
other students!

Drill 2: Matrix

This part is more like the drills you’ve done in the past.

1. Start a program (. cpp file) that #includes the two Matrix headers we
learned about this week, and also the using namespace line. See the
code from /home/shared/160-3/1026/use matrix.cpp if you don’t
remember how! For now, have it create a 4 x 4, 2D matrix of int,
and print that out to the screen. Make sure this much compiles. (As
always, try to compile as often as is reasonable, and start running your
code as soon as it’s feasible to do so.)

2. Before creating the matrix, read a single positive integer from the
user; modify the matrix creation so that it’s a square of that size.
(For instance, if the user typed 3, the matrix would be a 3 x 3 grid.)

3. Change the contents of the matrix from int to char, add code to read
in the grid from cin after reading the intended size of the grid, and
build two test files with input appropriate to this format (a size, and
then a curly-bracket-delimited matrix of characters).

4. Edit your examples to correspond to either completed or non-completed
Lijnenspel puzzles. In a starting-position puzzle, each char will be ei-

3This puzzle by Zack Butler of RIT, who also provided the inspiration for this lab.

CMSC160 Lab 8 27 October 2015

ther a digit from 1 to 9, or a period ‘.’ for an open square. In a
completed puzzle, all the periods will have been replaced with one of
‘<7 N Dor ‘v, depending on which direction their arrow was going.
(Displaying and storing a length-3 arrow as “>>>” instead of “~->" will
make our life easier later, but will still be easy to interpret visually.)

5. Write a function count_numsquares that takes a 2D grid (that is, a
Matrix<char,2>) and counts and returns how many of the squares
in the given grid are number squares. Two notes: first, to check if a
character is a digit, you’ll compare it to >0’ (or *1’) and ’>9’—note
the single quotes. Second, in this function you’ll need one for loop to
go through the rows, and another for loop inside it to go through each
element in each row. In your main function, after you’ve printed the
grid itself, print how many of its squares are number squares (i.e. the
result of this function).

6. Write a second function sum numsquares that takes a 2D grid and
computes the total of all the number squares in the given grid. (So,
for the Lijnenspel on the front page of this handout, it should return 12:
14+-34444.) Note that since we store a number square as a character
rather than a number, you’ll have to adjust it before doing math with
it—if you remember in Lab 5 that ’a’ + 3 yielded ’d’, you might
not be surprised to find that >3’ - >0’ yields the actual int value 3.
Make use of this fact when computing your sum! Then, in your main
function, also print the result of this function.

Vim FOTD: “ex” mode

Open two terminal windows, and arrange them side-by-side. The one on the
left I will designate the “edit” window, and the one on the right the “other”
window. In the edit window, edit a file named dummy.txt, type a few lines
into it, and save and quit. (The content doesn’t matter at all.)

In the other window, cat the file, that is, type
cat dummy.txt
You should see the exact contents you just typed in. If not, make sure both

windows are in the same directory (your home directory is fine) and try
again.

CMSC160 Lab 8 27 October 2015

Return to the edit window, again edit the dummy.txt file, and add a couple
more lines. This time, don’t save and quit. Back in the other window, cat
the file; since you haven’t saved yet, what should you see?

Return to the edit window again. Make sure that you are in command mode
(hit escape), and this time, instead of save-and-quit (with :wq), just save: if
you type :w by itself and hit enter, this writes the file without quitting. Now
in the other window, cat the file again—you should now see the updated
version.

What you are seeing here is (more of) a third mode of Vim besides insert
and command mode, called “Ex mode”. Ex was an editor back in the day, a
precursor to vi (which was itself the basis for vim). All interactions with the
ex editor were done through commands typed on a line that started with a
colon, and vestiges of this survive in the modern Vim editor; from ex mode
you control file access operations, among other things. The :w command
that you have just seen simply saves (“writes”) the current file.

Another command is to save to a different file. After you issued the :w
command a moment ago you were returned to command mode, so press the
colon key again to return to ex mode and type

w dummy2.txt

This creates a brand new file, named dummy?2.txt, with the current contents
of the edit buffer. But unlike “Save As...” in a typical modern word pro-
cessor, it doesn’t change the default name of the file, so that if you type :w
again, it will save it under the original name (dummy.txt).

You can use ex mode to edit a different file. Type
:e newfile.txt

and the dummy.txt file will disappear from the window, to be replaced by
an empty buffer. If you type text in here and then hit :w, it will be saved
under the name newfile.txt (as you can verify by using 1s and cat to look
at the file from the other window).

Ex mode can be used to quit Vim by typing :q and hitting enter. Note
that this does not include writing out the file first. If you type :q before
saving (and you can tell that the file has been edited by the “[+]” after the
filename in the status bar), Vim will warn you that you haven’t saved the
file. You can then type

CMSC160 Lab 8 27 October 2015

:q!

to say, no really, I mean it, just quit (don’t save).

There are other ex mode commands that we’ll learn eventually, but these
file-related commands enable a particularly useful interaction style: you can
now leave your source code open in one window, save it, and run the compiler
in the other window. This is useful so that you can keep any compiler errors
on the screen while you scan the code for the problem; in fact, from now on
you should get in the habit of having at least two windows open when you’re
programming: one for editing, and one for compiling and testing. (Some of
you have already been doing this, but it’s even more streamlined now.)

Back to the task: more Lijnenspel

In the latter part of the drills, you wrote some functions that technically
don’t rely on the fact that the grids are meant to be Lijnenspel puzzles—
just that some of the grid squares would have number characters in them.
For the rest of the lab, we’ll actually encode some of the logic of the puzzles
themselves. While we won’t quite write a solver ourselves, we will do a few
things that would help out a human trying to solve them.

Specifically, you’ll write functions to validate the puzzles themselves; to
check if there are any open squares; to verify whether a particular number-
square is “completed” (all its arrows drawn); and finally to check if an entire
Lijnenspel puzzle is completed. You’ll be able to use the two puzzles given
above and the two you worked on as your test cases.

Remember to make use of functions you’ve already written!

valid_puzzle should take a grid and determine whether the given grid
might be a valid Lijnenspel puzzle: in any valid puzzle, the total num-
ber of number-squares, plus the sum of all those numbers, should add
up to the number of squares in the grid. If not, it’s not even a valid
puzzle. (Make sure to have an example that isn’t valid when you test
this!)

has_open should take a grid and determine whether any of the given grid’s
squares are open—represented by a period (rather than a number or
arrow).

CMSC160 Lab 8 27 October 2015

count_arrows_east should take a grid and a row and column index for a
number-square at that position, and it should count how many ’>’
characters in a row appear immediately to the east (right) of the given
number-square. Note that you have to be careful not to “fall off the
edge” of the grid if the arrows go all the way to the rightmost column.

count_arrows_west, count_arrows_north, count_arrows_south should
be pretty much like count_arrows_east but modified to look for their
respective arrows in their respective directions.

is_numsquare_completed should take a grid and a row and column in-
dex for a specific number-square in that grid; and should determine
whether the number-square at that position is “completed”. A number-
square is completed if the count of the arrows in all four directions adds
up to the number in the square—meither too many (invalid) nor too
few (incomplete).

is_puzzle_completed should take a grid and determine whether the given
grid is fully and correctly filled in. To do so, it must be a valid puzzle,
with no open squares, and for which every number-square is completed.

Handing in

As usual, use the handin program. Designate this as 1ab8. Hand it in by
4pm on Monday, 2 November.

RUBRIC (tentative)

General

1 Attendance at lab with drill done or question written down
1/ Readme, evidence of testing

Drill

1 1-3: Reads and writes a 2D matrix of char with user-spec size
1 4: examples of Lijnenspel, in spec’ed format, in .in files

1 5: count_numsquares

1 6: sum_numsquares

Lijnenspel

L valid puzzle uses other functions & works

1 has_open

1 count_arrows_east

Ly ...and west, north, south

1/2 ...and is_numsquare_completed

1 is_puzzle_completed

