
CMSC160 Intro to Algorithmic Design Blaheta

Lab 8
Lijnenspel

27 October 2015

The drill for this lab is given below. Come to lab on Tuesday either with it
completed or with a specific written question in your notebook identifying
which drill step you got to and what about it you’re stuck on.

The drill this week has two semi-separate parts: one to make sure you
understand the surface task (a puzzle game called Lijnenspel), and the other
part to get you started on using the Matrix stuff we’ve been talking about
in class. You can do the drill bits (ha!) in either order.

Drill 1: Introducing Lijnenspel

Lijnenspel1 is a puzzle played on a grid (similar to Sudoku or a crossword
puzzle). In Lijnenspel, the initial grid contains numbers in some of the
squares (as on the left below), and the puzzle solver’s job is to draw hori-
zontal and vertical arrows extending out from the numbers to fill the rest
of the grid. The total length in squares of all the arrows emanating from a
numbered square should add up to that number, as in the solved example
on the right:2

To be a proper Lijnenspel puzzle, the solution should be unique; and indeed
any such puzzle with a unique solution is possible to solve without guessing
(though the logic may require a bit of work). There are various tactics that
can be applied. For instance, if a particular square is only “reachable” from

1Also known as “Line Game”, but the authors of the site I pulled examples from are
Dutch, and so publish it under both names. “Lijnenspel” looks cooler, no? It’s pronounced
“LINE-en-spell”.

2This example comes from the description page at http://www.puzzlepicnic.com/

genre?lijnenspel .



CMSC160 Lab 8 27 October 2015

one numbered square, there has to be an arrow connecting them; in the
following example, the second square in the top row and the fourth square
in the bottom row are only reachable from the 6—so we could immediately
“spend” six to draw arrows from the 6 to those two squares. That makes
the right column unreachable except from the 4; and this sort of logic can
continue through to complete the puzzle.3

To confirm you understand how the Lijnenspel puzzles work, work out at
least the first two on the handout I gave out in class. Compare notes with
other students!

Drill 2: Matrix

This part is more like the drills you’ve done in the past.

1. Start a program (.cpp file) that #includes the two Matrix headers we
learned about this week, and also the using namespace line. See the
code from /home/shared/160-3/1026/use matrix.cpp if you don’t
remember how! For now, have it create a 4 × 4, 2D matrix of int,
and print that out to the screen. Make sure this much compiles. (As
always, try to compile as often as is reasonable, and start running your
code as soon as it’s feasible to do so.)

2. Before creating the matrix, read a single positive integer from the
user; modify the matrix creation so that it’s a square of that size.
(For instance, if the user typed 3, the matrix would be a 3 × 3 grid.)

3. Change the contents of the matrix from int to char, add code to read
in the grid from cin after reading the intended size of the grid, and

3This puzzle by Zack Butler of RIT, who also provided the inspiration for this lab.

2



CMSC160 Lab 8 27 October 2015

build two test files with input appropriate to this format (a size, and
then a curly-bracket-delimited matrix of characters).

4. Edit your examples to correspond to either completed or non-completed
Lijnenspel puzzles. In a starting-position puzzle, each char will be ei-
ther a digit from 1 to 9, or a period ‘.’ for an open square. In a
completed puzzle, all the periods will have been replaced with one of
‘<’, ‘>’, ‘∧’, or ‘v’, depending on which direction their arrow was going.
(Displaying and storing a length-3 arrow as “>>>” instead of “-->” will
make our life easier later, but will still be easy to interpret visually.)

5. Write a function count numsquares that takes a 2D grid (that is, a
Matrix<char,2>) and counts and returns how many of the squares
in the given grid are number squares. Two notes: first, to check if a
character is a digit, you’ll compare it to ’0’ (or ’1’) and ’9’—note
the single quotes. Second, in this function you’ll need one for loop to
go through the rows, and another for loop inside it to go through each
element in each row. In your main function, after you’ve printed the
grid itself, print how many of its squares are number squares (i.e. the
result of this function).

6. Write a second function sum numsquares that takes a 2D grid and
computes the total of all the number squares in the given grid. (So,
for the Lijnenspel on the front page of this handout, it should return 12:
1+3+4+4.) Note that since we store a number square as a character
rather than a number, you’ll have to adjust it before doing math with
it—if you remember in Lab 5 that ’a’ + 3 yielded ’d’, you might
not be surprised to find that ’3’ - ’0’ yields the actual int value 3.
Make use of this fact when computing your sum! Then, in your main

function, also print the result of this function.

3


