
CMSC160 Intro to Algorithmic Design Blaheta

Lab 7
Divisors

20 October 2015

The drill for this lab is the Chapter 5 drill. Come to lab on Tuesday
either with it completed or with a specific written question in your notebook
identifying which drill step you got to and what about it you’re stuck on.

Given the format of the drill, if you do get stuck on how to fix one of them,
move on to the next one! Since the 25 elements of the drill can all be typed
in independently of each other, there’s nothing preventing you from typing
them all in, even if some of them aren’t fixed yet.

Notes and adjustments:

• When you type in the scaffolding, omit the lines that call keep window open();.

• For each of these, you’ll be saying, in your readme, what was wrong,
not just how you fixed it. For instance (freebie!) on the first one, it’s
not enough to just say “replace Cout with cout”, or “change C to c”;
you should also say, “C in Cout is uppercase, so it’s not seen as the
same thing as cout”. Or something like that.

• In numbers 13, 14, 15, and 19, insert the keyword unsigned before
the keyword int. The absence of the unsigned is not the problem, if
any, with those lines.

• The programs should compile, not just without error, but without
any warnings either (once you fixed the unsigned issue I mentioned
above).

• But to fix a program, it is not sufficient to just get it to compile and run
without throwing an exception; it needs to print, exactly, the string
“Success!” followed by a newline. (If it isn’t followed by a newline,
your prompt will get printed on the same line as the “Success!”,
which looks funny and is incorrect.)

• Below is a list of “par” values for each of the 25 problems. As in golf,
you want to try to find a fix with the lowest number of strokes—in
this case keystrokes. The number represents, roughly, the number of

CMSC160 Lab 7 20 October 2015

characters you can add, delete, or modify in order to fix the line. In
a few cases, you might do it with an even smaller number than I’ve
given. If you go over by one or two, that’s probably fine. If you go over
by a lot, give it a closer look—you might not really be understanding
the problem(s) with the line. (But, if you don’t come up with anything
better, still put that in as your answer! There’s partial credit to be
had here.)

Prob Par
1 1
2 1
3 2
4 2
5 5
6 5
7 4

Prob Par
8 5
9 2
10 1
11 2
12 2
13 1

Prob Par
14 2
15 1
16 4
17 4
18 2
19 5

Prob Par
20 1
21 2
22 6
23 2
24 2
25 3

• Don’t forget that some lines may have multiple errors, and some lines
may have none. (There’s at least one that has none, but I won’t tell
you which one(s) or how many. I’ve given it/them nonzero par value(s)
in the table above just to keep things fun.)

• When you type them in, it’s ok to spread the given code onto multiple
lines rather than typing them as one-liners as in the book. (This is
especially helpful for the later ones that have several statements and
control structures.)

I’ll be circulating around the lab to answer questions. If you’re stuck on
some part of the drill, ask me about that (and while you’re waiting for me
to get to you, look at the next section about vim movement commands). If
you’re not stuck but haven’t finished the drill, work on that now. If you’re
done with the drill, go on to the next section.

Vim FOTD: movement keys

Vim responds to the arrow keys and keys like PageUp and PageDown, but
there are a number of additional keys that can be pressed in command mode
to move around the file. Open one of the files you have lying around and
try some of them out.

2

CMSC160 Lab 7 20 October 2015

Key(s) Movement
h Left one character
j Down one line
k Up one line
l Right one character
∧ To beginning of current line
$ To end of current line

Ctrl-F Forward one page (screen)
Ctrl-B Back one page (screen)

G To last line of file
#G To line # (e.g. 1G to go to top of file or 23G to go to line 23)
w To beginning of next punctuation-delimited “word”
W To beginning of next whitespace-delimited “word”
e To end of this punctuation-delimited “word”
E To end of this whitespace-delimited “word”
b To beginning of this punctuation-delimited “word”
B To beginning of this whitespace-delimited “word”
} To next (batch of) blank line(s)
{ To previous (batch of) blank line(s)
% To matching paren/bracket
[(To previous unmatched left paren
[m To start of current function

Some of these are more mnemonic than others, of course. The first four are
not mnemonic at all, but super-convenient once you’ve got them in muscle
memory, because they’re right in the home row, so your fingers don’t have
to go anywhere to type them.

So what, right? Well, all of the delete commands that you learned in earlier
labs were special cases of a rule: d plus a movement command deletes from
“here” to wherever that movement goes. So, d1G deletes to the top of
the file. And d% deletes everything between this paren and the matching
one. Since the p command only pastes the most recently-deleted thing, it’s
very helpful to be able to delete everything you want to “cut” all at once.
Same goes for the y (“yank”, i.e. copy) commands. The re-indent command
(=) is another one that works with an arbitrary movement: =% reindents
everything between “here” and the matching paren or bracket, while =G

reindents everything from “here” to the end of the file, and so on.

There’s no need to memorise all the movement commands right now, of

3

CMSC160 Lab 7 20 October 2015

course. A couple might stick, but for the rest, even if you don’t remember
the command, you’ll remember it exists, and you can always come back and
refer to this sheet.

Reading and debugging

Your other task this week involves reading some code that I wrote. I’ve
placed a copy into a shared directory; copy lab7.tar from that directory
to your own as follows (assuming you’re in your own lab directory):

cp /home/shared/160-3/lab7.tar .

(don’t forget the lonely dot at the end to put it in the current directory).
Then, type

tar xvf lab7.tar

to unpack it.1

I’ve named the readme README1.TXT so it won’t overwrite your own readme
if you’ve already started one—you’ll want to absorb its contents into your
own readme, though. (One way to do this is to do it from within vim: in
command mode, type

:r README1.TXT

and it will read the contents of that file into the current buffer.)

Look in particular at the readme, and at the code in listDivisors.cpp.
The program is structurally more or less correct, but the code is rife with
bugs in several categories. Use your debugging skills to find and fix them;
and for each bug you fix, classify it and record it in the readme. There
are four major categories of bug here—compiler error, linker error, runtime
error that terminates the program, and logic error—and this program code
contains at least one in each category. Your readme should say for each
bug both what the bug was (and how you fixed it) and which of those four
categories it belongs in.

1The x stands for “extract”, the v is for “verbose”, and the f is for “file”, as opposed
to the magnetic data tape that such Tape ARchives were once stored on. tar is an old,
old program.

4

CMSC160 Lab 7 20 October 2015

In the course of your debugging, you might end up adding comments to the
code, which is fine, and you might add some print statements as well, which
you may leave in the code but should comment out. You should also edit
the program comment at the top of the file to reflect your authorship (add
another @author line with your name) and any changes to the description
as necessary.

Handing in

As usual, use the handin program. Designate this as lab7. Hand it in by
4pm on Monday, 26 October.

Rubric

RUBRIC

1 Attendance at lab with drill done or question written down
Drill, each
X Error found, fixed, identified in readme
X Non-error clearly indicated in readme
∗ Error fixed correctly, but omitted or misidentified in readme
∗ Error identified in readme, but unfixed
∗ Error fixed with lots of extra unnecessary work
× Problem skipped or answer not worth credit
Drill, points
1 At least 10 Xs (1/2 for 8 Xs, or X + ∗ ≥ 10)
1 At least 16 Xs (1/2 for 14 Xs, or X + ∗ ≥ 16)
1 At least 21 Xs (1/2 for 19 Xs, or X + ∗ ≥ 21)
1 All 25 Xs (1/2 for 23 Xs, or X + ∗ ≥ 25)
listDivisors
1 At least 2 errors found, fixed, id’ed in readme
1 Compiles to executable
1 All compiler and linker errors id’ed in readme

1/2 All but one id’ed; or, all id’ed as C/L but some swap C/L
1 Runs correctly

1/2 Displays divisors on at least some numbers
1 All runtime crashing and logic errors id’ed in readme

5

