
CMSC160 Intro to Algorithmic Design Blaheta

Lab 6
Vectors

6 October 2015

The drill for this lab is the Chapter 4 drill. Come to lab on Tuesday
either with it completed or with a specific written question in your notebook
identifying which drill step you got to and what about it you’re stuck on.

Notes and adjustments:

• In step 1 of the drill, it says to exit when a terminating ’|’ is entered.
Instead, just keep reading as long as there’s input.

• Remember that Ctrl-D terminates input if you’re typing input by hand
at the keyboard. If you’re redirecting from a .in file, the end of the
file terminates input without you having to do anything special.

• After step 5, make a copy of your .cpp file before you continue work-
ing; your (eventual) handin should include one program for steps 1–5,
and another for the rest of the steps. Both programs should have
appropriate test cases!

• Remember that cp is the command for copying files on the command
line in Linux. Consult your Lab 0 handout if you don’t remember how
to use it.

• Skip steps 7 and 8 regarding units and unit conversion. (Assume that
all the numbers entered are lengths in metres.)

I’ll be circulating around the lab to answer questions. If you’re stuck on
some part of the drill, ask me about that (and while you’re waiting for me
to get to you, look at the next sections about compiler options). If you’re
not stuck but haven’t finished the drill, work on that now. If you’re done
with the drill, continue on to the next section.

Command line FOTD: compile options

Actually, just two quick things: a fact about compile, and two things you
can do with compile that will make our lives easier.



CMSC160 Lab 6 6 October 2015

First, compile is happy to accept any number of input files at once:

compile sourcefile1.cpp otherstuff.cpp stillmore.cpp

Functions in any of those files can then refer to functions defined in the other
files. There are just two ground rules:

1. Across all the files, there needs to be exactly one main (or a main

replacement, as we’ll see later).

2. Functions used from other files need to have what the book calls a
“function declaration”. (We’ll see those in a little while too.)

Related to this fact, one convenient thing that we can do is tell the compile

command to only compile, and not also link—which means we can check for
compiler errors in a single .cpp file even if it doesn’t have a main function
in it, or in a single .u file, even if it refers to functions that aren’t defined
yet. We do this with the -c option:

compile -c partialprogram.cpp

This will not generate an executable even on success, but will give you any
compiler errors lurking in that file.

The second convenient thing is that even when linking an executable, compile
doesn’t always have to generate a file named a.out. You can specify the
name of the executable by preceding it with -o:

compile sourcefile1.cpp otherstuff.cpp stillmore.cpp -o programName

(Note, however, that this will overwrite whatever is in programName—don’t
accidentally type -o sourcefile1.cpp and overwrite your own code!) You
could then call the program as

./programName

We’ll see examples of that, too.

This is one of the big reasons I’ve been making you include “to compile”
and “to run” instructions in your readme—the compile instructions may
include multiple files or additional options, and depending on the compiler

2



CMSC160 Lab 6 6 October 2015

options, the command to run may vary. When you use the -o option, let
me strongly encourage you to copy the compile line and paste it into the
window, or (once you’ve done that once) use the up-arrow to re-execute
the previous command; this reduces opportunities to accidentally overwrite
something.

Right now, edit your readme to add the output options “-o ch4drill1”
and “-o ch4drill2” in the “to compile” lines of your drill work, and then
change the “run” instructions to

./ch4drill1

and

./ch4drill2

(with similar changes to any testing instructions).

Vector functions

For the rest of the lab, you’ll write code using functions that process vectors.
While the code will be similar in several ways to what you wrote in the drill,
leave the drill as its own separate source files generating their own separate
executables.

The sum function

The first function you’ll type in is sum, which is pretty similar to what I
wrote in class yesterday, but combining the function stuff and the vector
stuff into a single task.

First, the function declaration, which gives only the header of the function.
It will go in a separate “header” file, which ends in .h to signify its role.
Call it stat functions.h, and give it the following contents (just one line
for now; you will add more later).
stat functions.h

double sum (vector<double> nums);

It says that the sum function, whenever it gets defined, will take one param-
eter that is a vector of double, and it will produce a double as its return
value.

3



CMSC160 Lab 6 6 October 2015

Next, a test file to specify what it’s supposed to do. It follows the same
format as the test file I did in class yesterday.
test stat functions.u

#include "std lib facilities.h"

#include "stat functions.h"

test suite stats

{

tests:

test sum

{

vector<double> one num = { 3.25 };

vector<double> three nums = { 2.0, 1.5, 4.0 };

check (sum(one num)) expect == 3.25;

check (sum(three nums)) expect == 7.5;

}

}

We need to write the function itself, which we’ll put in a third file:
stat functions.cpp

#include "std lib facilities.h"

#include "stat functions.h"

double sum (vector<double> nums)

{

double result = 0.0;

for (double val : nums)

{

result += val;

}

return result;

}

AND FINALLY, one file to actually use the functions with arbitrary user
input:

4



CMSC160 Lab 6 6 October 2015

run stats.cpp

#include "std lib facilities.h"

#include "stat functions.h"

int main()

{

vector<double> nums;

double input;

while (cin >> input)

{

nums.push back(input);

}

cout << "Sum: " << sum(nums) << endl;

return 0;

}

To compile and run this program, you’d do

compile stat_functions.cpp run_stats.cpp -o run_stats

./run_stats

and then type in numbers, pressing Ctrl-D on a line by itself to end input.
You may (but don’t have to) create a pair of .in and .expect files to test
this, following the pattern that we’ve used for a while now (and that you
presumably used in the drill). The reason you don’t have to do that is that
the function can be tested using the Unci testing system—that .u file I had
you type in. To compile and run the test, you’d type

compile stat_functions.cpp test_stat_functions.u -o test_stat_functions

./test_stat_functions

If you typed in everything correctly, that should tell you

.

OK (1 tests)

But if it doesn’t compile or if there’s something wrong with the function,
it’ll report errors.

Right now:

5



CMSC160 Lab 6 6 October 2015

• Make sure everything is typed in correctly and compiles and runs ac-
cording to the above instructions

• Don’t forget to add those instructions to your readme!

• In some of the newer stuff that you haven’t seen before, try changing
different things and re-compiling and running to see what kinds of
error messages they elicit. This should remind you of Lab 1—it’s
exactly the same idea. You can even write down some of these new
error messages to add to your list.

More vector functions

Following the general pattern I showed you for sum, now write min and max,
which compute (respectively) the minimum and maximum value in the given
vector.

• Add their headers to stat functions.h. Each will be one additional
line.

• Add tests to test stat functions.u. Each test will be a block ba-
sically like the “test sum” block, but with different expectations on
what will be returned from the function call. They will go after the
existing test block but before the final curly bracket (because they’re
still part of the test suite).

• Add lines using them and printing results at the bottom of the run stats.cpp

file.

• Write the functions themselves inside stat functions.cpp. Their
structure will be similar to sum, but with an if inside the for loop to
decide whether to update the result (as in item 6 of the drill).

Something to think about for min and max: what should they do if the given
vector is empty? Another issue (for max at least): what if the whole list is
negative? Try to come up with an answer, and we’ll talk about this in class
(possibly after break).

6



CMSC160 Lab 6 6 October 2015

Testing inexact numbers

As I mentioned in class, one difficulty in writing test cases for anything
involving floating point numbers is that they can represent a computation
with high precision and yet still be inexact. For instance, if we compute

1.0/3.0

the “ideal” mathematical result would be 1
3 , or 0.33, but we can’t really

write either of those. To address this issue, the Unci test system (the stuff
in the .u files) has a way to specify a floating point answer approximately,
along with the error tolerance we’re willing to accept; so we can write

check (1.0/3.0) expect about 0.3333 +- 0.0001;

Under the hood, this is doing the same sort of computation you did for the
“almost equal” part of the drill.

Strictly speaking, almost any computation involving floating point numbers
should be tested using error tolerances like this (including the ones we’ve
already written)—feel free to go back and change the test cases I’ve already
given you to use the plus-or-minus notation (but definitely use it in the ones
involving division).

Still more vector functions

For the final version of all of this, I want you to have a simple statistics
package that can identify seven standard statistics about a group of numbers:

• Sum

• Smallest value

• Largest value

• Mean (average)

• Median (see below)

• Variance (see below)

• Standard deviation (square root of the variance)

7



CMSC160 Lab 6 6 October 2015

You’ve already got three of those. Each of these should be its own separate
function—and note that a few of the ones you haven’t written can call
the ones that you have. (For instance, do you see where might a call to
sum(nums) come in handy?)

One of the things you need to compute the median is a list sorted into
numerical order. Remember that C++ provides a function to do that work
for you! See §4.6.3 for some hints on computing the median (but note that
the code there doesn’t compute the correct median for even-length lists).

The variance of a list of numbers is defined as the average of the squares of
the differences between each number and the mean of the whole list. That is,
the (average of the (squares of the (differences between (each number) and
the (mean of the whole list)))). So, to compute it, you’ll first compute the
mean, then go through the list computing differences, and squaring them,
and so on.1

(If you’re looking to generate test cases and don’t have a graphing calculator
handy, Wolfram Alpha is nice for this: type in a list of numbers separated
by commas and it will give back a number of relevant statistics, including
most of what you need here.)

Handing in

As usual, use the handin program. Designate this as lab6. Hand it in by
4pm on Monday, 19 March.

1For reasons you’d learn in a statistics class, variance is defined as an average (as I’ve
done above) but on this kind of data it is computed with a denominator of n − 1 rather
than n. For purposes of this lab, I don’t care which of those two denominators you use.

8



CMSC160 Lab 6 6 October 2015

Rubric

This lab’s a little bit longer than earlier ones, and you have longer to finish
it, so it’s out of 15 points.

RUBRIC

General
1 Attendance at lab with drill done or question written down
1 Readme includes correct instructions to compile, run, test
Drill part 1
1 Loop reads one number each time, stops at end
1 Smaller/larger
1 “almost equal”
Drill part 2
1/2 Loop reads two numbers each time, stops at end
1/2 Tracks, prints smallest/largest so far
1 Stores numbers in vector of double
1/2 Prints vector of numbers
1/2 ...in sorted order
Stats functions
1 sum is correctly typed in, compiles, runs
3 min, max

1/2 headers in .h
1/2 test cases defined in .u
1/2 test case coverage
1/2 at least one defined, with loop containing comparison
1/2 both defined, with roughly correct algorithm
1/2 both work for all legal input

3 other vector functions
1/2 mean function defined
1/2 ... and well tested, including using about +-
1/2 median function test coverage
1/2 median function works correctly on odd-length vectors
1/2 median function works correctly on even-length vectors
1/2 variance and standard deviation functions

Don’t forget to claim your rubric check!

9


