
CMSC160 Intro to Algorithmic Design Blaheta

Lab 4
Expressions and design

22 September 2015

Tinkerblock drill

This part of the lab is, again, philosophically similar to an end-of-chapter
drill: it’s somewhat contrived but lets you write a short program to practice
the basics.

In your directory for this lab, you’ll encode the work we already did in class,
and then build a working program.

1. Add the description of the tinkerblock problem to the readme as a
description of the program.

2. Don’t worry about getting any drawn diagrams in there, but do encode
the worked-out examples as test cases, with .in and .expect files.

3. Write a .cpp file with the general program stuff (#include, main, etc)
and check that it compiles before you start adding more.

4. Steps 3 and 4 of the design process involve writing pseudocode and
identifying nameable values (variables, constants) in the process. Do
so.

5. Add them to your .cpp file piece by piece, writing code to read in data,
compute the required values according to your algorithm, and print
a result. Try to compile and test your code after every meaningful
chunk that you add.

I’ll be circulating around the lab to answer questions. If you’re stuck on
some part of the drill, ask me about that (and while you’re waiting for me
to get to you, look at the next section about completion). If you’re not stuck
but haven’t finished the drill, work on that now. If you’re done with the
drill, continue on to the next section. This week we have not one but two
features of the day!

CMSC160 Lab 4 22 September 2015

Feature of the day: Saving you some typing

Tab completion on the command line

At your command line prompt, from your home directory, type

echo "This is a test" > quaffle-160-long-name

This will create what is presumably a new file named “quaffle-160-long-name”
in your home directory. Boy, that’s a long name. So type this:

cat qua

(no space at the end) and hit Tab. Since this is presumably the only file in
your directory that starts with “qua”, the command line will tab-complete
the filename for you. Helpful!

Sometimes, it can’t give you a complete filename, but it might still be helpful.
Type

cat la

and hit Tab. By now you shuold have multiple directories that start with
“la”; it should complete as far as it can (adding a b to make “lab”), and
then let you type the rest, and if you hit Tab again it will give you a list of
valid completions.

Tab completion is a feature of all modern command line shells. It has even
made its way into Windows’s Command Prompt. If you type enough to
uniquely identify a file, it will complete the filename for you, followed by a
space, so you can type the next argument or hit enter. If there are multiple
choices, it’ll fill in as much as it can, and then wait for you to finish.

I trust that a well-cultivated sense of laziness will addict you to this feature
fairly quickly. Hitting Tab will become part of your typing muscle memory
within days—if not hours.

Completion in Vim

Open vim to edit a .cpp file you’ve already got lying around, such as
stringinfo.cpp or fileinfo.cpp from last week’s lab.

2

CMSC160 Lab 4 22 September 2015

Now, go to a blank line in the file, enter insert mode (by pressing ‘i’)
and type “in” (minus the quotes), then hit Ctrl-N repeatedly (still in in-
sert mode). You will cycle through everything starting with those two let-
ters, which should at least include “include” and “int”, and possibly also
“input” or some other variable name depending on the program you’re in,
eventually cycling back to just plain old “in”. Add a “c” after the “in” and
the Ctrl-N will only give you “include” since you’ve ruled out the others.
If you use Ctrl-P (“previous”) instead, it cycles in the reverse order.

I have encouraged you to use descriptive variable names, and this makes
doing so a lot more feasible. Basically, as you edit a file, vim will keep track
of all the words (variable names, function names, reserved words like “else”
and “double”) in that file. When you type part of a keyword, Vim knows
what other keywords in that file could match what you’ve typed; and Ctrl-
N and Ctrl-P will let you use these potentially long names without typing
them all out each time.

Go ahead and undo the changes you’ve made to this file (in command mode,
press ‘u’ a couple times until you run out of changes), and exit.

Another problem

Consider the following scenario:

Imagine the owner of a movie theater who has complete freedom
in setting ticket prices. The more he charges, the fewer the
people who can afford tickets. In a recent experiment the owner
determined a precise relationship between the price of a ticket
and average attendance. At a price of $12.50 per ticket, 120
people attend a performance. Decreasing the price by a quarter
($.25) increases attendance by 15. Unfortunately, the increased
attendance also comes at an increased cost. Every performance
costs the owner $450. Each attendee costs another ten cents
($0.10). The owner would like to know the exact relationship
between profit and ticket price so that he can determine the
price at which he can make the highest profit.1

As with the tinkerblock problem, the program you write will not quite an-
swer the ultimate question (here, what price makes the highest profit), but

1Adapted from Felleisen et al, “How to design programs,” §3.1

3

CMSC160 Lab 4 22 September 2015

it will be a tool that lets someone inform such a decision by trying certain
input values and seeing what output values they result in.

Work through the problem-solving process again, this time on the theater
profit problem. Recall that these are the steps of the design process I laid
out in class yesterday:

1. Understand the problem: input(s)? output(s)? description?

2. Work through examples by hand

3. Explain algorithm (pseudocode)

4. Identify nameable values (variables, constants)

5. Encode in C++

6. Test

There should be some written thing for each step in the process; some will
be reflected directly in the final program, others in other files such as the
readme or in test case files (including both the .in and its corresponding
.expect for each test case).

When it comes time to write pseudocode, don’t forget that you need to be
using several intermediate values, each expressing one piece of the compu-
tation, rather than trying to cram all the computation in a monolithic (and
incomprehensible) one-liner.

As before, the lab is due 4pm on Monday. Submit it as lab4.

RUBRIC

1 Attendance at lab with drill done or question written down
Documentation (readme)
1 File exists, includes descriptions
1 Instructions for compile/run/test
1 Tests pass exactly or are mentioned as not passing
Tinkerblock factory
1 Compiles, runs, reads correct required inputs
1/2 Test cases (worked out examples)
1/2 Appropriately named intermediate values
1 Prints correctly-computed result
Theater profit
1 Compiles, runs, reads correct required inputs
1/2 Test cases (worked out examples)
1/2 Appropriately named intermediate values
1 Prints correctly-computed result

4

