
CMSC160 Intro to Algorithmic Design Blaheta

Lab 3
Strings

15 September 2015

The drill for this lab is given below, after a short reading on how strings
work and some of the operations we can do on strings. Come to lab on
Tuesday either with it completed or with a specific written question in your
notebook identifying which drill step you got to and what about it you’re
stuck on.

String info

There’s not really any single good place in our textbook that covers string
internals (at least, not that would be accessible this early in the term), so I
want to present some of them here:

• Strings are made up of characters; each element of a particular string
value is itself a char value.

• The position of each character in the string is called its “index” within
the string. Some people use “indexes” as the plural of “index” and
others use “indices”; you’ll probably hear me use both.

• An index represents how far past the first character you need to go, so
the first character is actually at index 0 (because if you’re at the first
character you don’t need to go any further). The character at index 1,
one past the first, is the second element of the string, and so on.

• The length of the string is the actual number of characters in it; the
last index is thus always one less than the length.

Here’s an illustration of the five-character string "Hello", with indices
marked:



CMSC160 Lab 3 15 September 2015

And, a selected list of things you can do to or with strings, a couple of
which you’ve already seen and several that are new. All the expressions in
the table below assume you have a string variable named s that’s already
got a value, but they’ll work with any variable that’s a string (hopefully,
in actual code, with a more descriptive name than s).

s = "foo" assigns the value "foo" to be the new contents of
the string variable—works with any string after the
equal sign

s == "foo" determines whether the string is the same as the value
"foo"—works with any string after the double-equal
sign

s + "foo" computes the string that would result from concate-
nating the string s with the string "foo"—works with
any string after the plus sign

s[2] retrieves the character at index 2 (that is, the third
character)—works with any non-negative int expres-
sion in the square brackets, as long as it’s not past
the end of the string

s.front() retrieves the first character in the string
s.back() retrieves the last character in the string
s.length() retrieves the number of characters in the string
s.substr(2,3) computes the portion of the string that starts with

the character at index 2 and continues for a total of 3
characters—works with any non-negative int expres-
sions instead of 2 and 3

s.find(’x’) computes the index of the first occurrence of the char-
acter ’x’ in the string—works with any char ex-
pression inside the parentheses. If the given char-
acter is not in the string, returns the special number
string::npos (so you can ask if the s.find(’x’) ==

string::npos and if it does, then ’x’ was not found
in the string)

String drill

There’s no drill in the book on this topic, but this part of the lab is philo-
sophically similar to an end-of-chapter drill: it’s somewhat contrived but
lets you write a short program to practice the basics.

2



CMSC160 Lab 3 15 September 2015

Make your directory for this lab, and start its its README.TXT file. (From
here on out, I’m not going to give you a checklist of what-all to include in
your readme, because you have done a few and know what belongs in them,
but I do always expect you to have one, and it should reflect the actual
instructions and documentation for how to work with your code.)

The first program in this week’s lab will be written in a file called stringinfo.cpp

and it will read a single string—specifically, it will read one string that
doesn’t have spaces in it—and print out information about it.

1. First, write the program to read the string and print out the message

The string " " has characters.

except with the blanks filled in correctly for that string: the string
itself and its length (how many characters it has). Note that to include
a double-quote inside a double-quoted string, you have to use \" for
the quote inside the string (as with \n, the backslash indicates that
something special is happening).

2. Add second line to the output that says

Its first is ’ ’ and its last is ’ ’.

filling in the blanks with the first and last characters of the string (you
can assume it will not be empty).

3. In cases where the string is at least three characters long, add a third
line

If you trim the first and last characters it leaves " ".

The blank here should have the whole string except for its first and
last characters.

4. Finally, in cases where there is a hyphen in the string, make it print a
last line

It has a hyphen at index .

I’ll be circulating around the lab to answer questions. If you’re stuck on
some part of the drill, ask me about that (and while you’re waiting for me
to get to you, look at the next section about dotfiles). If you’re not stuck
but haven’t finished the drill, work on that now. If you’re done with the
drill, continue on to the next section.

3



CMSC160 Lab 3 15 September 2015

Command line feature of the day: Dotfiles

From your home directory, type

ls -a

It should list a bunch of files you don’t normally see that start with a period.
Many command line programs have a number of configuration options that
the user can set to control how they appear and how they behave. To make
these config files easily accessible, they were put in the user’s home directory;
and to make them unintrusive, they were named by convention with names
beginning with periods, which ls doesn’t normally list. Such config files are
popularly known as “dotfiles”.

Let’s start by doing some things to configure Vim, since we spend so much
time using it. Edit (using vim, of course) the .vimrc file. (It probably
doesn’t exist yet unless I’ve already help you set it up.) Add the following
lines to it:

set number

syntax on

You’ll be typing configuration options into this file, and then seeing what
happens when you edit your C++ code and other files; this will be easiest
to see if you open a second terminal window, and in the left one edit the
.vimrc (in your home directory) and in the right one edit your C++ files (in
one of your lab directories).

Right away, when you edit a C++ file you should see a difference: the syntax
highlighting and the line numbers that you’ve seen when I edit code.

Now, in the .vimrc file, add the line

set laststatus=2

and save it. Now, edit a C++ file. Do you see the difference?

(Go ahead, look for it.)

The change is that there is a status bar on the (second-to-) last line of the
window which contains the name of the file (useful!) and, once it has been
edited, the symbol [+].

Here are a few other things to add to your .vimrc:

4



CMSC160 Lab 3 15 September 2015

set cindent shiftwidth=2

set showmatch

Try adding them, and see if you can figure out how they change vim’s
behaviour when editing a C++ file. We’ll talk about them in class tomorrow,
and you can see if you guessed right.

One last one: PuTTY defaults to a terminal window with dark background
and white letters; and you may notice that this makes Vim’s syntax colouring
a little hard to read. If so, you can add

set background=dark

to your .vimrc to improve the contrast there. (The default colour scheme
is designed for light backgrounds; you can ask for it explicitly as “set
background=light” if you prefer it.)

Another dotfile that you probably already have is a .bashrc, which controls
how your command-line shell runs. (The name of the shell is “bash”, which
stands for “Bourne-again shell”, a very geeky joke whose explanation you
can google for yourself.) From your home directory, edit this file.

If you have one already, it probably has a lot of stuff in it. Some other time
you might want to read through it all, but for now I’ll just point out one
small thing you can edit: your prompt. That’s the text that is printed after
every command you execute. For now, make it something simple; go to the
bottom of the file and insert

PS1="Type something: "

Inelegant, but we’ll fix it in a minute.

Save and quit the editor. Now, the changes haven’t taken effect yet, be-
cause your current command-line shell was started before you changed the
.bashrc. One way to check how the changes went is to open a new terminal
window—this will make a new shell, using the new settings. Another is to
force the .bashrc to be reread by typing

source .bashrc

Not happy with the prompt? Let’s change it again. Edit the .bashrc file
again, and this time change the prompt to

5



CMSC160 Lab 3 15 September 2015

PS1="\h \w -\#-$ "

(That’s approximately what I use.) This gives you, respectively, the name
of the machine, the directory you’re currently in, and the “command event”
number, i.e. a running count of commands you’ve executed in this shell. You
probably don’t want to forget the space before the double quote.

Still not happy? There are lots of things you can put into your prompt. In
the manpage for bash (way down around line 2700—type “2700” and hit
enter to scroll down that far in the manpage) there’s a list of them, including
username, time, date, and other formats for the current directory. Feel free
to tweak it (but don’t spend too much time on it right now).

One last thing to add to the .bashrc file. Some of you have asked how to
make the ls be highlighted like mine is. You can ask for it explicitly by
typing ls --color, and you can say “always run that whenever I type ls”
by adding the following to the end of your .bashrc file:

alias ls=’ls --color’

Then all the executables should be in green and all the directories in blue.

Back to strings: testing

In this next part of the lab, we’ll revisit the drill and think about how to
effectively test it. We’ll start planning our test cases on paper. Here, write
down a string that’s at least five characters long (no spaces or hyphens; it
can be your name or anything else with at least five characters):

Now, write out both lines of the response the program would give to that
input string:

Go ahead and create a file stringinfo1.in that contains the word, similar

6



CMSC160 Lab 3 15 September 2015

to what we did last week (except this time, the entire file is just one line with
a single string in it). This week, we’ll go a little bit further in automating
our testing, and write the expected output in a file as well: create a file
stringinfo1.expect that contains the two expected lines of text output.
This pair of files constitutes your first test case.

Last week, we saw that we could run a program this way:

./a.out <stringinfo1.in

But as I said then, redirection is more powerful than just that. We can
also redirect output—instead of printing to the screen, the output can go
someplace else. Such as a file:

./a.out <stringinfo1.in >stringinfo1.out

(the spacing is not very important, but notice the direction of the arrows).
When you run that, it won’t show any output at all, but it will create the
file stringinfo1.out, which contains everything sent to cout. If you type

cat stringinfo1.out

you can see it. More importantly, you can use a program called diff to
compare it to what was expected:

diff stringinfo1.expect stringinfo1.out

If they’re the same, it says nothing, but if they are at all different, including
spelling or even just whitespace, then diff will report a difference, and show
you the lines from each one that differ. (Any line that matches is omitted
from the output.)

Here’s why that’s super-nifty: as you add more test cases, if you run a bunch
of tests at once, it will only show you if and when any of the tests failed.

More test cases

As we started to talk about last week, we want our test cases to have coverage
with respect to the problem. Without going overboard, we want to have a
test case for each meaningfully different input scenario. What’s meaningfully

7



CMSC160 Lab 3 15 September 2015

different? Well, changing a character in an input might affect the output,
but only incrementally. On the other hand, if we have a short string of
just two characters for the input, that makes this program act significantly
differently (omitting a line!), so that’s worth testing. Pick a two-letter string
and write it in the first row of the Input column below.

Add more meaningfully different inputs to the table, along with comments
explaining what case they test. (How many do you need to test all the
cases?) Then, create the .in files with the words you wrote in the Input
column, and corresponding .expect files with the expected output.

Test case Input Comment

stringinfo2 Less than three characters

In general, some version of a table like this is a nice feature for a readme:
the Input column can be omitted there, but if you list the name of each case
along with a comment about what it’s testing, that will help you keep track
of it and will also help me figure out what you’re trying to do.

Filename utility

In general, Linux and Mac filenames can be broken down as follows:1

dirname. The part of the filename that indicates the directory it’s in, or if
the directory is not explicit in the filename, a single period ".".

1Windows is similar, but with slight differences.

8



CMSC160 Lab 3 15 September 2015

extension. The part of the filename after the dot, if any. (The dot is part
of the extension; but some filenames have no extension at all.)

basename. What’s left over if you strip out the dirname and the extension.

For instance, a filename like

lab1/hello_world.cpp

has a dirname of "lab1", a basename of "hello world", and an extension
of ".cpp".

Write a program called fileinfo that reads in a single filename and prints
out the parts of that filename. Note that while some filenames may have
no extension, every filename has a dirname—if there are no slashes in the
filename, the file must be in the current working directory, so the dirname
is reported as a single period (".").

As you program this, carefully reread the description of dirname, extension,
and basename, and make sure you cover all the possible situations; also make
sure you test all the possible situations. In fact, the points for having good
test case coverage are available even if your program doesn’t pass all of your
own tests—it shows me that you understood the cases, even if you didn’t
get the program 100% working. If that happens, say so in the readme.

It’s due as usual on Monday at 4pm. Hand in using the usual command,
this time with assignment name lab3.

9



CMSC160 Lab 3 15 September 2015

Rubric

RUBRIC (Tentative)

1 Attendance at lab with drill done or question written down
1 Readme present and has the usual stuff
Drill (stringinfo)
1 Program compiles and runs, reads string, prints it out
1 Uses if, length correctly
1 Uses substr correctly
1 Uses find correctly, including comparing result to string::npos

1 Test cases for stringinfo, good coverage *
fileinfo
1 Handles case where dirname and extension are both present
1 Handles all cases correctly
1 Test cases for fileinfo, good coverage *

* To get each full point for good test case coverage, you have to EITHER
pass all test cases in the group OR indicate in the readme which ones aren’t
passing. This is your way of showing me that you’ve actually run your tests.

Those comments are related to, but separate from, your rubric check. Don’t
forget to claim your rubric check bonus!

10


