CMSC160 Intro to Algorithmic Design Blaheta

Lab 3
Strings
15 September 2015

The drill for this lab is given below, after a short reading on how strings
work and some of the operations we can do on strings. Come to lab on
Tuesday either with it completed or with a specific written question in your
notebook identifying which drill step you got to and what about it you're
stuck on.

String info

There’s not really any single good place in our textbook that covers string
internals (at least, not that would be accessible this early in the term), so I
want to present some of them here:

e Strings are made up of characters; each element of a particular string
value is itself a char value.

e The position of each character in the string is called its “index” within
the string. Some people use “indexes” as the plural of “index” and
others use “indices”; you’ll probably hear me use both.

e An index represents how far past the first character you need to go, so
the first character is actually at index 0 (because if you're at the first
character you don’t need to go any further). The character at index 1,
one past the first, is the second element of the string, and so on.

e The length of the string is the actual number of characters in it; the
last index is thus always one less than the length.

Here’s an illustration of the five-character string "Hello", with indices

marked:
0 1 2 3 4

IHIIeII'LII'LIIOI




CMSC160

Lab 3 15 September 2015

And, a selected list of things you can do to or with strings, a couple of
which you’'ve already seen and several that are new. All the expressions in
the table below assume you have a string variable named s that’s already
got a value, but they’ll work with any variable that’s a string (hopefully,
in actual code, with a more descriptive name than s).

s = "foo"

s == "foo"

s + "foo"

s[2]

.front ()
.back ()
.length()
.substr(2,3)

n n n n

s.find(’x?)

String drill

assigns the value "foo" to be the new contents of
the string variable—works with any string after the
equal sign

determines whether the string is the same as the value
"foo"—works with any string after the double-equal
sign

computes the string that would result from concate-
nating the string s with the string "foo"—works with
any string after the plus sign

retrieves the character at index 2 (that is, the third
character)—works with any non-negative int expres-
sion in the square brackets, as long as it’s not past
the end of the string

retrieves the first character in the string

retrieves the last character in the string

retrieves the number of characters in the string
computes the portion of the string that starts with
the character at index 2 and continues for a total of 3
characters—works with any non-negative int expres-
sions instead of 2 and 3

computes the index of the first occurrence of the char-
acter ’x’ in the string—works with any char ex-
pression inside the parentheses. If the given char-
acter is not in the string, returns the special number
string: :npos (so you can ask if the s.find (°x?) ==
string: :npos and if it does, then *x’ was not found
in the string)

There’s no drill in the book on this topic, but this part of the lab is philo-
sophically similar to an end-of-chapter drill: it’s somewhat contrived but
lets you write a short program to practice the basics.



CMSC160 Lab 3 15 September 2015

Make your directory for this lab, and start its its README.TXT file. (From
here on out, I'm not going to give you a checklist of what-all to include in
your readme, because you have done a few and know what belongs in them,
but I do always expect you to have one, and it should reflect the actual
instructions and documentation for how to work with your code.)

The first program in this week’s lab will be written in a file called stringinfo.cpp
and it will read a single string—specifically, it will read one string that
doesn’t have spaces in it—and print out information about it.

1. First, write the program to read the string and print out the message

The string " " has _ characters.

except with the blanks filled in correctly for that string: the string
itself and its length (how many characters it has). Note that to include
a double-quote inside a double-quoted string, you have to use \" for
the quote inside the string (as with \n, the backslash indicates that
something special is happening).

2. Add second line to the output that says
Its first is ’_’ and its last is ’_’.

filling in the blanks with the first and last characters of the string (you
can assume it will not be empty).

3. In cases where the string is at least three characters long, add a third
line

If you trim the first and last characters it leaves "____".

The blank here should have the whole string except for its first and
last characters.

4. Finally, in cases where there is a hyphen in the string, make it print a
last line

It has a hyphen at index _.



