
CMSC160 Intro to Algorithmic Design Blaheta

Lab 1
Hello, world!

1 September 2015

The drill for this lab is the Chapter 2 drill (p53). Come to lab on Tuesday
either with it completed or with a specific written question in your notebook
identifying which drill step you got to and what about it you’re stuck on.

Notes and adjustments:

• As noted in class on Friday, the steps on this one are geared to Win-
dows users. For step 1, “set up a project” can be interpreted as “create
a directory for this lab” (using mkdir as described last week). For step
2, type in the program but omit the keep window open line, and ig-
nore the rest of the stuff about what to do if std lib facilities.h

is missing.

• Also as mentioned on Friday, remember that the command to com-
pile is compile filename.cpp (replacing the filename as appropriate),
and when the compiling succeeds, you’ll run your program by typing
./a.out on the command line.

• For step 4, take notes on the errors and error messages.

Specifically, I want you to come out of this with a page or section of
your notebook that has a table of the general form

Error message the compiler gives me What it meant/how I fixed it

... ...

It is primarily for your own benefit, but I’ll ask to see it sometimes
and we’ll be talking about it occasionally in class. Leave yourself
enough room that you can keep adding to it: as you edit more and
more programs, you will continue to encounter more and different error
messages, and these notes will be a useful reference for you.

I’ll be circulating around the lab to answer questions. If you’re stuck on
some part of the drill, ask me about that (and while you’re waiting for me
to get to you, look at the next section about man pages). If you’re not stuck
but haven’t finished the drill, work on that now. If you’re done with the
drill (including making notes about the errors), go on to the next section.



CMSC160 Lab 1 1 September 2015

Command line feature of the day: Man pages

Since the early days of Unix back in the ’70s, a standard feature has been
the inclusion of electronic copies of the user and programmer manuals. They
were implemented by means of the “man” program, and “man pages” exist
for most command-line commands that you might use. Type

man ls

, for instance, and you’ll see a description of the program that lists files and
directories. (Use the arrow keys, PageUp, etc to scroll the page, and hit ‘q’
to quit.) Under “SYNOPSIS” you can see how it’s called—by typing “ls”
followed by options (if any) and then filenames (if any). Under “DESCRIP-
TION” is a listing of all the possible options. One is -a, which makes ls

list all entries, even if they start with a period. In another window, type

ls -a

Scrolling down the manpage, check out what the often-useful -l, -t, and -R

do. Try them out.

Technically, it is not the man program itself that is displaying this helpful
information; it just pulls the text out of a database, and a program called
less does the displaying. Type

man less

to see some of the different commands that you can use inside that program.

For that matter, you can

man man

to find out more about how to run the man program, like how to display all
the pages in the manual on a particular topic, rather than just the first.

After the drill

After you’ve completed the steps listed in this chapter’s drill, I have a few
more things I want you to do for this lab.

2



CMSC160 Lab 1 1 September 2015

Documentation

One program development habit I want you to start building right away is to
always include at least minimal documentation with anything you submit.
Because your lab submissions will generally be directories full of stuff, there
should always be one easy-to-find file that says what the stuff is and what
to do with it. By convention, this file is usually called README.TXT (and if
that’s the file we look for first, it is by definition easy to find).

In any programs you hand in for this course—and in any future courses you
take from me, for that matter—I always expect a readme of some sort, even
if it’s very minimal. Always always. At a bare minimum it needs to say
who you are, what it’s supposed to do, and how to compile/run/test it or
otherwise make it do what it’s supposed to.

Our program doesn’t do much, so for now the file won’t be very long. Use
vim to edit a file named README.TXT, and into it type the following text
(filling in blanks as appropriate):

Lab1: Hello

Date:
today’s date

Author:
your name

The first program prints "Hello, world!" on a line by itself.

To compile:

compile hello world.cpp

To run:

./a.out

(Note that if your source code is not named hello world.cpp you should
make your readme reflect what it’s actually called!) That’s all you have to
do with the README.TXT file (for now). Save it and quit.

Playing with the program

First of all, if your hello world.cpp still has an error in it from the end of
the drill, fix the error (and make sure that it compiles and runs correctly).
Then, in the same directory:

3



CMSC160 Lab 1 1 September 2015

• Make another program, that prints some other one-line message (such
as “Hello, CMSC160!”, but feel free to be creative). Hint: most of this
program will be exactly the same as hello world.cpp.

• Make a third program, that prints something that is at least five lines
long, maybe a very short story or perhaps a picture—you may have
noticed that the terminal window uses a monospace font, and you can
take advantage of that to make artwork. (Note that the backslash is
a special character in quoted text, so if you want to use it in your
artwork, type two backslashes to generate a single printed backslash.)
The length of the output should because you actually end the lines,
not simply by making them so long that they wrap to the next line on
the screen.

• Update your readme file (README.TXT) to also include descriptions of
these additional programs, including what to type to compile them
and then how to run them. Since this is all in a single directory, there
should only be a single readme file, but it will have descriptions and
instructions for all the programs you’ve written for the assignment.

Don’t forget that part of developing a program is testing it: after you’ve
typed in what you think will work for the second and third programs, you
still have to compile it and run it to be sure it does what you expect.

Rubric

Each full-length lab this term will include, at the end of its handout, the
rubric by which I will grade it. This can be a sort of to-do list to make sure
you haven’t forgotten anything, and as the labs get longer and crunch time
gets crunchier, the rubric can help you triage which features are worth more
points and hence are more important to work on.

4



CMSC160 Lab 1 1 September 2015

RUBRIC

2 Present in lab, with completed drill or question about it
Drill
1 hello source file exists
1 ...and it compiles and works
1 ...and I’ve seen your table of errors and explanations (in notebook ok)
Additional
1 Second program prints different line
1 Third program runs, prints something
1 ... prints five or more lines, using newlines
1 Readme file covers req’d details for hello program
1 ... and other two programs

Rubric check bonus

I’m trying something new this term to encourage everybody to really care-
fully check the rubrics each week. In your readme file, include a breakdown
of all the rubric points you think you got. (Line-by-line is fine; prose like
“all three drill points” is ok too as long as it’s clear.) When I grade your lab,
if my assessment matches yours—not just the total but on each point—then
you’ll get a successful rubric check mark for that week’s lab.

At the end of the term, you’ll get a half point for each successful rubric
check.

Note that the rubric check is quite independent of the rest of your score that
week—if you have a rough week and don’t get much past the drill and think
you’re getting a 4, and you say so (and say which four points you’re getting),
that’s a successful rubric check. My hope is that this will both boost scores
(make sure you don’t miss any easy points you might have forgotten about)
and reduce surprises (because you know what score you’ll be getting), but
self-assessment and metacognition—knowing what you don’t know and still
need to work on—are useful skills in their own right, and the points for this
are available to everyone.

Handing in

If you don’t finish all of that during the lab period (especially if you had
technical difficulties during the drill, or are being very creative with the

5



CMSC160 Lab 1 1 September 2015

third program), that’s fine. This lab will be due this Friday the 4th at
4pm. (In general, final work for a lab will be due the following Monday at
4pm; this lab is short, though, and Monday is Labor Day.)

Your work for this lab includes multiple files within a directory (maybe you
named the directory lab1, or maybe hello or something else). As you did
last week during Lab 0, first make sure you are not “in” the directory with
the files. Then, if your directory is named lab1, you would type

handin cmsc160-3 lab1 lab1

If your directory were named hello, you would instead type

handin cmsc160-3 lab1 hello

and in general, that third command line argument will be whatever directory
you want to be handing in.

If all goes well, you should get a message to that effect telling you which
files got handed in. If something is amiss, there will be an error message to
tell you what to fix. Whatever it says, do read the message—it’s generally
fairly descriptive about what happened, whether successful or not.

6


