
Floating Point Numbers notes and example

We have seen how to represent fractions and non-integers in binary (base 2) notation. For instance:

23 5/8 can become 10111.101

However, we encounter a problem when we try to represent this on a computer. We have talked

about physical ways to represent 0s and 1s. However, with only two options, we have no way of

representing the “binary point”. Floating point representations are a way of dealing with this.

For floating point, we need a sign, an exponent and a fractional part.

There are a couple steps.

1) Convert the binary number to “normal form”.

a) This means to move the binary point to just after the first 1 in the representation, and keep track

of how many places it had to move and in which direction. For instance:

10111.101 becomes 1.0111101 by moving the binary point 4 places to the left.

b) This number is then written as

1.0111101 * 2
4

This is called “normal form”.

2) a) Now, for the number fill in the three following pieces of information:

Example:

Sign exponent fractional part

+ +4 0111101

Note that the “leading” 1 has been omitted from the fractional part. Why can we do this?

b) Now, represent the sign as a bit, the exponent in sign-magnitude binary notation and leave the

fractional part.

Example:

Sign exponent fractional part

0 0100 0111101

c) End result:

001000111101

ASSUMPTIONS: This assumes 12 bits for one number, 4 used for the exponent and 7 used for

the fractional part.

Challenge: Write this number in Hexadecimal.

CHANGE ASSUMPTIONS:

Now, lets assume 16 bits for one number, 6 bits for the exponent. (leaving 9 for the fractional

part)

Revisit the Example:

Sign exponent fractional part

0 0100 0111101

We now need two more bits for the exponent and two more for the fractional part. We add 0’s.

Where do we add them?

Revisit the Example:

Sign exponent fractional part

0 000100 011110100

Result:

0000100011110100

Challenge: Write this number in Hexadecimal.

