
FILE COMPRESSION

Robert P. Webber, Longwood University

If you download material from the Internet, you probably know how excruciating the

wait for the download to complete can be, even on a fast connection. Computers can

transmit and store enormous amounts of information, but music and video files can be so

large that they tax the capabilities of even the largest and fastest systems. File

compression is a common way to reduce the size of computer files so they can be

transmitted quicker and take up less storage. You may have encountered zip, GIF, or

MP3 files. Those are standard compression schemes, and there are many others.

For a good overview of file compression, read http://www.howstuffworks.com/file-

compression.htm. This article discusses lossless and lossy compression algorithms, and it

has a nice example illustrating how the LZ adaptive dictionary-based algorithm can

reduce the size of a passage of text. Let’s look at this algorithm in more detail, beginning

with a simple example. Suppose we want to compress a string of 0’s and 1’s, say

000111101011011111101101011011011110110101011010110110100 .

This is not as unrealistic as it might sound, because computer files, at machine level,

consist of strings of 0’s and 1’s. This string has 57 characters.

Starting on the left, break the string into substrings, putting a space after every string we

haven’t seen before. The first character is 0, which we haven’t seen. Put a blank after it.

The second character is also 0. We’ve seen that, so go on to the third character, another

0. We haven’t seen the string 00, so put a blank after it. The next character is 1, which

is new, so insert a blank. So far, we have

0 00 1

Continuing, there are 14 substrings.

0 00 1 11 10 101 1011 111 10110 101101 10111 1011010 10110101 10110100

Number the substrings from 1 through E, using hexadecimal to save space. Now

consider the last two strings. They both begin with the string 1011010, which is the third

string from the end, the string numbered C in hexadecimal. Instead of writing 10110101

10110100, we could write C1 C0, with the understanding that C refers to the twelfth

string. Let’s organize our work into a dictionary.

http://www.howstuffworks.com/file-compression.htm
http://www.howstuffworks.com/file-compression.htm

String Position

number (hex)

Prefix Prefix position

number

Coded string

0 1 None 0 00

00 2 0 1 10

1 3 None 0 01

11 4 1 3 31

10 5 1 3 30

101 6 10 5 31

1011 7 101 6 61

111 8 11 4 41

10110 9 1011 7 70

101101 A 10110 9 91

10111 B 1011 7 71

1011010 C 101101 A A0

10110101 D 1011010 C C1

10110100 E 1011010 C C0

In the coded strings, prefix position 0 denotes the empty string. The entire coded string

is

0010013130316141709171A0C1C0

This string has 28 characters, less than half the length of the original string. The

compression ratio, which is the ratio of the original length to the coded length, is

 57 / 28 = 2.04

LZ compression works best when there are a lot of repeated patterns in the data. It is less

effective when the data is random. Fortunately, patterns do tend to occur often in

ordinary text. For large text files, reductions in size on the order of 50% are common.

To decode, we would need to know the first two columns of the table. More

sophisticated versions of the LZ algorithm build a shorter dictionary which increases the

compression, even when the dictionary itself is counted. The logic is pretty complicated,

but the HowStuffWorks article indicates how it might be done.

LZ compression is a lossless algorithm. That is, the compressed version preserves all the

information in the original, and decoding the compressed message restores the exact

original. This is important in text. Dropping letters or words from a passage of text

might radically change the meaning, or even make it unintelligible!

Music files typically have a lot of information that isn’t necessary, however. The human

ear has difficulty distinguishing between two tones that are practically the same. There

are some sounds that we hear much better than others, and there are many sounds that we

cannot hear at all. Compression algorithms such as MP3 use facts like these to eliminate

certain parts of songs without appreciably hurting the quality of the sound for the listener.

These algorithms are lossy in the sense that the original is lost when the compression is

done. However, the human ear cannot tell the difference! Compression ratios on the

order of 10:1 are common using the MP3 method. This is what allows us to save

thousands of songs on a zip drive.

Video files are compressed in much the same way. The human eye cannot detect subtle

differences in shade. Entire parts of a picture may look the same to the naked eye – a

blue sky, for example. Instead of storing information for each distinct pixel in the

picture, we could store information on only one color and the location and number of

pixels to which it applies. If the scheme works well, the human viewer won’t notice the

change, but the file size will be greatly reduced. GIF and JPG are video compression

algorithms.

For an overview of lossy algorithms, see http://computer.howstuffworks.com/mp3.htm.

Specific information on audio storage

CDs store music in an uncompressed format. When a song is digitally recorded, the

audio is sampled 44,100 times a second. Each sample is 16 bits (2 bytes), and

separate samples are taken for the left and right stereo channels. Thus for each second of

music, a CD stores

44,100 *2 *2
sec

176,400 176.4
sec sec

samples bytes

ond sample

bytes bytes
K

ond ond
 

for both channels. A CD holds about 650 Mbytes, so it can store approximately

650 650,000

3684.8 seconds
176.4 / 176.4 /

Mbytes Kbytes

Kbytes second Kbytes second
 

or about 61 minutes of music per CD.

Now think about how long it would take to download a song over the Internet. Suppose a

song is three minutes long. We would have to transmit

 176.4 *60 *3 31,752
bytes second

K minutes = Kbytes
second minute

per three minute song.

http://computer.howstuffworks.com/mp3.htm

When people started to download music, the fastest download modem speed was 56Kbits

(not bytes!) per second. No DSL or fiber optics lines were available then. Our three

minute song would require

31,752 8
* 4536 seconds

56 /

4536
= 75.6 minutes

60

Kbytes bits

Kbits second byte

seconds

seconds / minute





or 1 hour 15.6 minutes for a single song! Clearly, this was unacceptably slow.

Fortunately, MP3 compression was available, and it typically provided compression

ratios of between 10:1 and 14:1 without noticeably affecting the audio quality. Our

32,752 32Kbyte Mbyte file will compress down to about 3 Mbytes, which reduces the

transmission time to a few minutes on a 56K modem and seconds on a DSL line. At a

12:1 compression ratio, for instance, our three minute song could be downloaded in

 75.6 minutes / 12 = 6.3 minutes

on a 56K modem, or 50.8 seconds on a 5 Gbit/second DSL line. Data compression

makes downloading music and video files practical.

EXERCISES

In exercises 1 through 3, use LZ compression to

 Obtain the substrings;

 Write out the dictionary for the string;

 Write the compressed string;

 Find the compression ratio.

1. 00100001110110001100111010010010100100010010010100111010

2. 001000011111111100100000000001111111000000000111100011110000011

3. abbaaaabbbababbbbabbbaabbaaabbbaaabbbaabbaabbb

4. A lossy compression scheme for text that has achieved some notoriety in the

media is to omit all vowels from the middle of words. The result is often understandable

by humans. For instance, can you comprehend the following sentence?

 It ws a drk and strmy nght. Sddnly a sht rng ot!

We informally use this scheme in text messages and vanity license plates. Use it to

compress the following passages, and compute the compression ratio for each. Are the

compressed versions understandable?

 Ask not what your country can do for you – ask what you can do for your country.

 Bill Gates once said that nobody would ever need more than 64K bytes of

memory in a computer.

People often use informal compression schemes when composing text messages on a

wireless phone. For example, “where are you?” might be compressed as “wr r u?” In

exercises 5 through 8, express the phrase as you might write it as a text message and

calculate the compression ratio.

5. are you coming to the party this weekend?

6. at the baseball game with Billy

7. see you tomorrow night at eight

8. please pick up cookies, chips, and French onion dip

A music file stores (in standard, uncompressed form) about 176.4 Kbytes of data for

each second of music. Use this information in problems 9 through 18.

9. How many bits (not bytes) of data are needed for a 2 ½ minute song?

10. Suppose we transmit the 2 ½ minute song using a 56 Kbit per second modem.

(That is, the modem can send 56,000 bits of data each second.) How long will it take to

send the entire song?

11. How long would it take to transmit the song over a DSL line that transmits data at

the rate of 2 Mbits per second?

12. Now suppose we compress our 2 ½ minute song using MP3 compression with a

10:1 compression ratio. How long would it take to transmit the compressed file using a

56 Kbit modem? a 2 Mbit DSL line? a 15 Mbit fiber optics line?

Exercises 13 through 15 use Don McLean’s classic song American Pie, which is 8

minutes 30 seconds long.

13. Confirm that it would require approximately 90 Mbytes of memory to store this

song in uncompressed format.

14. How long would it take to download the uncompressed file using

 a. an old 14.4 Kbits/second modem?

 b. a 56 Kbits/second modem?

 c. a DSL line transmitting at 5 Mbits/second?

 d. a fiber optics line transmitting at 15 Mbits/second?

15. Same as Problem 14, except the file is compressed using MP3 with a compression

ratio of 12:1 before transmitting.

Exercises 16 through 18 use Queen’s classic song We Will Rock You, which is 2

minutes 15 seconds long.

16. Confirm that it would require approximately 23.8 Mbytes of memory to store

this song in uncompressed format.

17. How long would it take to download the uncompressed file using

 a. a 56 Kbits/second modem?

 b. a 3 Mbits/second cable modem line?

 c. a 20 Mbits/second fiber optics line?

18. Same as Problem 17, except the file is compressed using MP3 with a compression

ratio of 14:1 before transmitting.

19. Assume that a two hour movie requires 226.8 Gbytes of storage in

uncompressed format. How long would it take to download the uncompressed file using

 a. a 56 Kbits/second modem?

 b. a 10 Gbits/second cable modem?

 c. a 18 Gbits/second fiber optics line?

20. Compression ratios as high as 50:1 are possible with MPEG4. Repeat Exercise

19 assuming the file has been compressed at 50:1 before downloading.

21. Use the logic in the HowStuffWorks article to determine a suitable dictionary and

coded form for the string:

The rain in Spain falls mainly in the plain. Where does it rain? On the plain! On

the plain! Where’s the plain? In Spain! In Spain!

