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Digital logic is at the “bottom” of the computer.  It models what happens when we strip 

away all the programming languages and prewritten packages, and try to understand how 

the computer actually performs operations.  For example, how does a computer actually 

add two binary numbers?  To understand that, we have to understand digital logic. 

 

Digital logic is based on the fundamental operations from symbolic logic:  and, or, and 

not.  These are called logical operations or Boolean operations, after George Boole, 

who was the first person to analyze them. 

 

Boolean variables have precisely two values, true and false (often represented by  1  

and  0).  A Boolean value can be represented by a bit, or a binary digit. 

 

We can represent Boolean operations by tables of  0s  and  1s, showing what happens in 

every combination of bits.  These tables are like the truth tables that are used in 

symbolic logic. 

 

Here are the definitions of the basic functions. 

 

Not     This function just reverses the value of the variable:  not true = false, and not 

false = true .  Let  A  be the variable.  Possible values of  A  are  1  and  0 (true  and  

false).   

 

 A not A 

 

 1    0 

 0    1 

 

Or    The or function takes two operands.  It is  true  if at least one operand is  true  and  

false  if both are  false .  Let  A  and  B  be the operands.  Each can be  true  or  

false .  This means there are four possible combinations. 

 

 A B A or B 

 

 0 0     0 

 0 1     1 

 1 0     1 

 1 1     1 

 

The order of the rows doesn’t matter. 

 



 A B A or B 

 

 1 1     1 

 1 0     1 

 0 1     1 

 0 0     0 

 

defines the same operation. 

 

And    This function takes two operands.  It is  true  if both operands are  true  and  

false  otherwise. 

 

 A B  A and B 

 

 0 0     0 

 0 1     0 

 1 0     0 

 1 1     1 

 

These functions have special graphics symbols. 

 

not   or   and  
 

 

The functions are called circuits when we represent them graphically. 

 

Of course, we could define other logical functions by means of tables, too.  Here’s such a 

function  F 

 

 A B F 

 

 0 0 1 

 0 1 1 

 1 0 1 

 1 1 0 

 

That is,  0 F 0 = 1, 0 F 1 = 1, and so on; or, as mathematicians prefer to write, F(0,0) = 1, 

F(0,1) = 1, F(1,0) = 1, and  F(1,1) = 0 . 

 

Indeed, this function turns out to be very useful, and it also has a name:  nand .  Notice 

that the column for  F  is the opposite of the column for  and . 

 



 A B A and  B A nand B 

 

 0 0     0       1 

 0 1     0       1 

 1 0     0      1 

 1 1     1      0 

 

That is,  nand  is the same thing as  not and, which means  and  followed by  not.  It 

even has a special graphics symbol: 

 

nand  
 

 

Two other very useful functions are  nor  and  xor. 

 

nor (not or, which means  or  followed by  not) 

 

 A B A nor B 

 

 0 0     1 

 0 1     0 

 1 0     0 

 1 1     0 

 

The graphics symbol for  nor  is   

 

xor (exclusive  or) 

 

 A B A xor B 

 

 0 0     0 

 0 1     1 

 1 0     1 

 1 1     0 

 

Notice that  xor  is  true  if exactly one of the operands is  true  and  false  otherwise.  It 

isn’t obvious how to write this function using  and, or, and  not, but we’ll figure out how 

to do it shortly.   

 

The graphics symbol for  xor  is   

 

Other logical functions could be defined (see exercises 1 and 2, for instance), but they 

haven’t been found to be as useful as these.  Also, we can define more complicated 

logical functions by combining the basic ones.  For instance, consider the function  

 

 (not A) and (not B) 



 

Derive its truth table as follows. 

 

 A B not A not B (not A) and (not B) 

 

 0 0   1   1       1 

 0 1   1   0       0 

 1 0   0   1       0 

 1 1   0   0       0 

 

Notice the final column is the same as the  nor  table!  We have just shown that these 

circuits are equivalent; that is, that they have the same truth values. 

 

 A nor B (not A) and (not B) 

 

Recall that we defined above that   

 

  A nor B not (A or B) 

 

Therefore, we have shown that 

 

 not (A or B) (not A) and (not B) 

 

We can determine whether any two logical functions are equivalent by comparing their 

truth tables.  The functions are equivalent if and only if the truth values are the same. 

 

Electrical engineers can physically construct these six basic circuits from wire, silicon, 

and transistors.  They are called gates, and they, or at least a subset of them, form the 

basis for modern computers.  A computer is, at its most basic level, a bunch of connected 

gates. 

 

It isn’t necessary to build all six gates.  Some of them can be written as combinations of 

others.  For instance, we have already seen that  nor  can be written as a combination of  

not  and  and  gates: 

 

A nor B (not A) and (not B) 

 

If we have two  not  gates and one  and  gate, we can build a circuit that will perform the  

nor  function. 

 

Similarly, we can write  nand  and  xor  as combinations of  and, or, and  not  gates 

(Exercises 9 and 11).  This means that the set of gates  {and, or, not} is functionally 

complete, because the other basic gates (and indeed, any logical circuit) can be built from 

only these three gates. 

 



Are there other functionally complete sets of gates?  The answer is yes.  Indeed,  and  can 

be written as a combination of  or  and  not: 

 

 A and B not ((not A) or (not B)) , 

 

which you can verify using a truth table.  So  {not, or}  is functionally complete. 

 

Similarly,  or  can be written as a combination of  and  and  not. 

 

 A or B not ((not A) and (not B)) , 

 

so  {not, and}  is functionally complete. 

 

Surprisingly, {nand} by itself is functionally complete! 

 

 not A A nand A 

 A and B (A nand B) nand (A nand B)  (Exercise 13) 

 A or B (A nand A) nand (B nand B)  (Exercise 14) 

 

Similarly, {nor} is a functionally complete set.  This means that a computer engineer 

with a big supply of  nand  or  nor  gates could theoretically build the most powerful 

computer in the world. 



EXERCISES 
 

 

1. Here is a truth table for a logical function F.   

What is the value of  F  for inputs 

 

 a. I2 = 1, I1 = 0? 

 

 b. I2 = 0, I1 = 1? 

 

 c. I2 = 1, I1 = 1? 

 

 

2. Here is a truth table for a logical function F.    

What is the value of  F  for inputs 

 

 a. I2 = 0, I1 = 1? 

 

 b. I2 = 1, I1 = 0? 

 

 c. I2 = 0, I1 = 0? 

 

 

3. Here is the diagram for a circuit.  Complete the truth table.  The first line has been 

done for you as an example.  

                                                                                   

 

 

 

 

 

 

 

 

4. Here is a diagram for a circuit.  Complete the truth table.  The first line has been 

done for you as an example.   

                                                                                               

 

 

 

 

 

 

 

I2 I1 F 

0 0 1 

0 1 0 

1 0 1 

1 1 1 

I2 I1 F 

0 0 1 

0 1 1 

1 0 0 

1 1 1 

A B F 

0 0 1 

0 1  

1 0  

1 1  

A B F 

0 0 0 

0 1  

1 0  

1 1  



5. Here is a diagram for a circuit.  Construct the truth table. 

 

 

 

 

 

 

 

 

 

6. Here is the diagram for a circuit.  Construct the truth table. 

 

 

 

 

 

 

 

 

 

7. Are the following circuits functionally equivalent? 

 

 

 

 

 

 

 

 

 

8. Are the following circuits functionally equivalent? 

 

 

 

 

 

 

 

In exercises 9 through 14, write the truth table for the function. 

 

9. not (not x) 

 

10. not (x or y) 

 

11. A and (not B) 

 



12. A or (A and B) 

 

13. X and (X or Y) 

 

14. x and (x and y) 

 

 

15. Are the circuits  x and x  and  x  functionally equivalent? 

 

16. Are the circuits  x or (x and y)  and  x  functionally equivalent? 

 

17. Are the circuits  not (A or B)  and  (not A) or (not B)  functionally equivalent? 

 

18. Are the circuits  not ( A and B)  and  (not A) or (not B)  functionally equivalent? 

 

 

19. Design a circuit that is functionally equivalent to a NAND gate using only AND, 

OR, and NOT gates. 

 

 

20. Design a circuit that is functionally equivalent to a NOR gate using only AND, 

OR, and NOT gates. 

 

 

21. Design a circuit that is functionally equivalent to a XOR gate using only AND, 

OR, and NOT gates. 

 

 

22. Here is the truth table for a logical function  =>.  Design a functionally equivalent 

circuit using only AND, OR, and NOT gates. 

 

   

 

 

 

 

 

 

 

23. Design a circuit that is functionally equivalent to an AND gate using only NAND 

gates. 

 

 

24. Design a circuit that is functionally equivalent to an OR gate using only NAND 

gates. 

A B => 

0 0 1 

0 1 1 

1 0 0 

1 1 1 


