
INTRODUCTION TO DIGITAL LOGIC

Robert P. Webber, Longwood University

Digital logic is at the “bottom” of the computer. It models what happens when we strip

away all the programming languages and prewritten packages, and try to understand how

the computer actually performs operations. For example, how does a computer actually

add two binary numbers? To understand that, we have to understand digital logic.

Digital logic is based on the fundamental operations from symbolic logic: and, or, and

not. These are called logical operations or Boolean operations, after George Boole,

who was the first person to analyze them.

Boolean variables have precisely two values, true and false (often represented by 1

and 0). A Boolean value can be represented by a bit, or a binary digit.

We can represent Boolean operations by tables of 0s and 1s, showing what happens in

every combination of bits. These tables are like the truth tables that are used in

symbolic logic.

Here are the definitions of the basic functions.

Not This function just reverses the value of the variable: not true = false, and not

false = true . Let A be the variable. Possible values of A are 1 and 0 (true and

false).

 A not A

 1 0

 0 1

Or The or function takes two operands. It is true if at least one operand is true and

false if both are false . Let A and B be the operands. Each can be true or

false . This means there are four possible combinations.

 A B A or B

 0 0 0

 0 1 1

 1 0 1

 1 1 1

The order of the rows doesn’t matter.

 A B A or B

 1 1 1

 1 0 1

 0 1 1

 0 0 0

defines the same operation.

And This function takes two operands. It is true if both operands are true and

false otherwise.

 A B A and B

 0 0 0

 0 1 0

 1 0 0

 1 1 1

These functions have special graphics symbols.

not or and

The functions are called circuits when we represent them graphically.

Of course, we could define other logical functions by means of tables, too. Here’s such a

function F

 A B F

 0 0 1

 0 1 1

 1 0 1

 1 1 0

That is, 0 F 0 = 1, 0 F 1 = 1, and so on; or, as mathematicians prefer to write, F(0,0) = 1,

F(0,1) = 1, F(1,0) = 1, and F(1,1) = 0 .

Indeed, this function turns out to be very useful, and it also has a name: nand . Notice

that the column for F is the opposite of the column for and .

 A B A and B A nand B

 0 0 0 1

 0 1 0 1

 1 0 0 1

 1 1 1 0

That is, nand is the same thing as not and, which means and followed by not. It

even has a special graphics symbol:

nand

Two other very useful functions are nor and xor.

nor (not or, which means or followed by not)

 A B A nor B

 0 0 1

 0 1 0

 1 0 0

 1 1 0

The graphics symbol for nor is

xor (exclusive or)

 A B A xor B

 0 0 0

 0 1 1

 1 0 1

 1 1 0

Notice that xor is true if exactly one of the operands is true and false otherwise. It

isn’t obvious how to write this function using and, or, and not, but we’ll figure out how

to do it shortly.

The graphics symbol for xor is

Other logical functions could be defined (see exercises 1 and 2, for instance), but they

haven’t been found to be as useful as these. Also, we can define more complicated

logical functions by combining the basic ones. For instance, consider the function

 (not A) and (not B)

Derive its truth table as follows.

 A B not A not B (not A) and (not B)

 0 0 1 1 1

 0 1 1 0 0

 1 0 0 1 0

 1 1 0 0 0

Notice the final column is the same as the nor table! We have just shown that these

circuits are equivalent; that is, that they have the same truth values.

 A nor B (not A) and (not B)

Recall that we defined above that

 A nor B not (A or B)

Therefore, we have shown that

 not (A or B) (not A) and (not B)

We can determine whether any two logical functions are equivalent by comparing their

truth tables. The functions are equivalent if and only if the truth values are the same.

Electrical engineers can physically construct these six basic circuits from wire, silicon,

and transistors. They are called gates, and they, or at least a subset of them, form the

basis for modern computers. A computer is, at its most basic level, a bunch of connected

gates.

It isn’t necessary to build all six gates. Some of them can be written as combinations of

others. For instance, we have already seen that nor can be written as a combination of

not and and gates:

A nor B (not A) and (not B)

If we have two not gates and one and gate, we can build a circuit that will perform the

nor function.

Similarly, we can write nand and xor as combinations of and, or, and not gates

(Exercises 9 and 11). This means that the set of gates {and, or, not} is functionally

complete, because the other basic gates (and indeed, any logical circuit) can be built from

only these three gates.

Are there other functionally complete sets of gates? The answer is yes. Indeed, and can

be written as a combination of or and not:

 A and B not ((not A) or (not B)) ,

which you can verify using a truth table. So {not, or} is functionally complete.

Similarly, or can be written as a combination of and and not.

 A or B not ((not A) and (not B)) ,

so {not, and} is functionally complete.

Surprisingly, {nand} by itself is functionally complete!

 not A A nand A

 A and B (A nand B) nand (A nand B) (Exercise 13)

 A or B (A nand A) nand (B nand B) (Exercise 14)

Similarly, {nor} is a functionally complete set. This means that a computer engineer

with a big supply of nand or nor gates could theoretically build the most powerful

computer in the world.

EXERCISES

1. Here is a truth table for a logical function F.

What is the value of F for inputs

 a. I2 = 1, I1 = 0?

 b. I2 = 0, I1 = 1?

 c. I2 = 1, I1 = 1?

2. Here is a truth table for a logical function F.

What is the value of F for inputs

 a. I2 = 0, I1 = 1?

 b. I2 = 1, I1 = 0?

 c. I2 = 0, I1 = 0?

3. Here is the diagram for a circuit. Complete the truth table. The first line has been

done for you as an example.

4. Here is a diagram for a circuit. Complete the truth table. The first line has been

done for you as an example.

I2 I1 F

0 0 1

0 1 0

1 0 1

1 1 1

I2 I1 F

0 0 1

0 1 1

1 0 0

1 1 1

A B F

0 0 1

0 1

1 0

1 1

A B F

0 0 0

0 1

1 0

1 1

5. Here is a diagram for a circuit. Construct the truth table.

6. Here is the diagram for a circuit. Construct the truth table.

7. Are the following circuits functionally equivalent?

8. Are the following circuits functionally equivalent?

In exercises 9 through 14, write the truth table for the function.

9. not (not x)

10. not (x or y)

11. A and (not B)

12. A or (A and B)

13. X and (X or Y)

14. x and (x and y)

15. Are the circuits x and x and x functionally equivalent?

16. Are the circuits x or (x and y) and x functionally equivalent?

17. Are the circuits not (A or B) and (not A) or (not B) functionally equivalent?

18. Are the circuits not (A and B) and (not A) or (not B) functionally equivalent?

19. Design a circuit that is functionally equivalent to a NAND gate using only AND,

OR, and NOT gates.

20. Design a circuit that is functionally equivalent to a NOR gate using only AND,

OR, and NOT gates.

21. Design a circuit that is functionally equivalent to a XOR gate using only AND,

OR, and NOT gates.

22. Here is the truth table for a logical function =>. Design a functionally equivalent

circuit using only AND, OR, and NOT gates.

23. Design a circuit that is functionally equivalent to an AND gate using only NAND

gates.

24. Design a circuit that is functionally equivalent to an OR gate using only NAND

gates.

A B =>

0 0 1

0 1 1

1 0 0

1 1 1

