CS262 Info Mgmt Blaheta

Lab 5
/4 Oct 2007

Next, we’ll move on to a portion of the class where we play games. Well,
actually, we’ll write games and then we’ll write programs to play games.

Task 1: Comprehend the code, part 1

First, another code-reading exercise. In the 1ab5 subdirectory, I’ve placed
a few Java files that you’ll be adding to. The only reason I wrote them is
to save time; there’s nothing in there that should be mysterious to you. So,
first, look them over and see if you understand how they work. These are
the classes that are in there:

e TicTacToe represents a game of tic-tac-toe. It doesn’t actually play
the game itself; it’s basically just up there marking down the Xs and
Os while the player calls off grid locations.

e GameRunner actually plays the game, although it’s really, really dumb
about how it does so. (The next few days of class discussion will
involve how we could improve on this, but for today’s lab we’re not
worrying about it.)

e GameState is relevant to the second part of the lab. Skip it for now.

e Pair<X> represents a pair of values of the same type, and is hashable.
In the context of TTT it is storing Integers representing (respectively)
the row and the column.

e PlayerID is for representing whose turn it is, whose marker is in a
given board square, and who won.

As it stands, everything in there compiles, but if you run it (by running the
GameRunner class) it will throw an exception. Once you've read through the
code and have a handle on it, go on to the next section, where you’ll fix this.



CS262 Lab 5 4 Oct 2007

Task 2: Finishing the code base for TTT

There are two methods in TicTacToe which are incomplete: isValidMove
and nextState. There are lots of values for a Pair<Integer> that do not
represent valid TTT moves at all, and a few that might be valid but not in
the current game state—the isValidMove method should return false for
all of those, and true for the values of move that are actually valid right
NOW.

For nextState, I've already put in the code that checks whether a move
is valid (by calling isValidMove), makes a copy of the current state, and
returns it, but that means that right now it just returns something identical
to the current state! Fix it by adding code that modifies the returned value
to represent the new state. Do not modify this in any way.

Then go ahead and run GameRunner. If all is well, it should spit out, in text
format, a game of tic-tac-toe that runs until the board is full. It happens
that this game would be a draw. You would certainly be capable of writing
isGameOver and winner at this point, but that’s not what I want you to do
for this lab.

Task 3: Comprehend the code, part 2

You may have noticed that GameRunner didn’t actually have to know any-
thing at all about how TicTacToe worked, other than that its moves were
of type Pair<Integer>—and even at that, it didn’t need to actually look
inside the Pair. This is a convenient way to divide the work between classes
that implement the game mechanics and classes that do the work of playing
the game.

So now go back and look at GameState. It’s an interface that boils down
all the information that GameRunner needs from a specific-game class to
actually play the game. Look it over and compare with the TicTacToe
implementation to understand what each method does and is supposed to
do. Ask questions if there’s anything you don’t understand.

Then move on to the next task.



CS262 Lab 5 4 Oct 2007

Task 4: Implementing a different game

Connect Four is a game that is in some ways very similar to tic-tac-toe: it’s
played on a grid, with each player taking turns to place tokens, trying to
make a line (in any direction). The CF grid is bigger—seven columns and six
rows, in the standard version marketed by Milton Bradley. To win, you need
four in a row, rather than three. And the only valid moves are those that
place tokens at the top of a non-full column. (In the face-to-face version, the
board is mounted vertically and tokens dropped in, so that physical gravity
enforces this rule.)

Using the TicTacToe class as a guide or inspiration, implement a ConnectFour
class that also implements GameState. You will have to think about what
the MoveType should be, and how to detect a valid move, and how to update
the grid.

Because GameRunner is not itself generified, you will have to go in and update
the types to make it run with your ConnectFour class. And again, it’s not
likely to play very well—but it will demo your code just fine.

As in the first part of the grid, writing isGameOver and winner is outside
the scope of the lab. If you do finish, start thinking about how you could
modify GameRunner to pick the “best” next move.



