
CS262 Info Mgmt Blaheta

Lab 3
20 Sep 2007

This week we’ll do more corpus work, and exercise some of the probability
techniques we’ve been talking about. We’ll be using a new corpus format,
where each word has been annotated with its lexical category, or part of
speech. You’ll look at some existing code (probably similar to code you’ve
already written) and then modifying it to improve the statistical models in
the system.

Task 1: Comprehend the code, part 1

Into the course directory, I’ve put my solution for homework 2.3, which
collected bigram statistics and reported on them. Read this code. Take ten
or fifteen minutes to work through it and understand it; if you’re not sure
what something does or how something works or just why I did something
a certain way, make sure to ask.

Let me answer a few likely questions in advance:

• All the work of the preprocessing was farmed out to a separate class,
StripScanner, which is a wrapper for Scanner but does some extra
stuff.

• Strictly speaking, the level of abstraction (helper methods etc) is a
little overboard if this were the entire problem being solved. It’s not
outrageously so, though, and some of these extra methods will make
your life easier in the second half of this lab (stay tuned).

• Note that there are two kinds of maps flying around: those with integer
values (i.e. counts), for which I’ve used HashMaps since all I need to
do is lookups and stores, and I have to do that a lot; and those with
double values (i.e. probabilities), for which I’ve used TreeMaps since
I’m actually printing a report from them.

• The prefix business on simpleReport is all so that I can reuse simpleReport
in the course of conditionalReport. This is admittedly a little bit
hacky.

But if there are other things that puzzle you, let me know.



CS262 Lab 3 20 Sep 2007

Setting up the problem

In lecture we’ve talked a bit about the problem of tagging words with their
appropriate lexical category. In the realm of statistical NLP, this problem
is attacked by feeding in a big corpus of tagged text, using this to train a
probability model, and then reading a stream of untagged text and marking
it up.

There are probably as many ways to represent marked up data as there are
corpora1 that include markup, but our data will use a simple one: categories
(i.e. POS tags) will simply alternate with the words they tag. No category
or word contains a space. Whitespace is not significant except to separate
tags and words.

Making it even easier for you, the punctuation will have already been sep-
arated out for you. You’ll get to treat a comma as a “word” spelled “,”
(which has a lexical category also spelled “,”). This does mean you can’t
assume that words will be alphanumeric, but it makes a ton of other things
much simpler. A sample sentence: 2

DT The JJ quick JJ brown NN fox VBD jumped IN over DT the
JJ lazy NN dog . .

Inside the lab3 subdirectory are four files in this format, of varying size
from “toy” (the above sentence) through “long” (some 58,000 words). The
shortest ones may be helpful for debugging code, but the goal here is to use
the long one to train a tagger and then see how it does on the short one
(which is not a subset of lab3-long, but rather other text in the same genre).

1“Corpora” is the plural of “corpus”. In English it’s pronounced “COR–pruh”.
2As an aside, in case you’re curious, the POS tags needn’t be completely opaque to

you. The main ones are DT “determiner” (or “article”), NN “noun”, JJ “adjective”, and
VB “verb”. Many of the others are mnemonic according to what their members look
like: IN means “preposition” because “in” is a preposition. NNS is “plural noun” because
such words often end in “-s”. VBD is “past-tense verb” because they often end in “-d”,
and VBN is “past participle of verb”, because the ones that don’t look just like the VBD
form often end in “-n”, like “chosen” or “gotten”. You don’t need to know all of this to
complete the lab, but it might make the examples easier to follow.

2



CS262 Lab 3 20 Sep 2007

Task 2: Comprehend the code, part 2

As a first pass at solving this problem, I’ve done a very thin adaptation of
BigramStats to learn the distribution p(T |W ) based on this input format,
and then to tag text. I’ve called it DumbTagger, and it’s also available in the
lab3 directory. Spend a few minutes reading this code as well, and make
sure you understand what all the pieces do.

By and large, the stats gathering is identical, or nearly so, to the previous
program. The tagging code is new, so you should focus some attention on
it, but it should hopefully be straightforward. If, perhaps, a bit dumb.

Setting up the program

For the remainder of the lab you will be building a system derived from
DumbTagger. Set this up by copying it (and SkipScanner) into your home
directory or some suitable subdirectory thereof. Rename the file (and the
class) NaiveTagger, and add yourself as an author.

You’ll also want to create symbolic links to the data files. If you cd into
your working directory for this lab and type

ln -s /home/courses/cs262/lab3/lab3-tiny.pos

then you will get symbolic link named lab3-tiny.pos in your directory that
you can refer to. Set these up for all four of the data files.

Also, compile and run the existing program. You’ll have to provide the
training text as a command-line argument, and the test text on standard
input, so you’ll want something like

java NaiveTagger lab3-long.pos < lab3-tiny.pos

although that doesn’t wrap the text, and if it were longer it wold run off the
top of the page, so you might want

java NaiveTagger lab3-long.pos < lab3-tiny.pos | fmt | less

or

3



CS262 Lab 3 20 Sep 2007

java NaiveTagger lab3-long.pos < lab3-tiny.pos | fmt | vim -

instead.

As you modify this program for the rest of the lab, don’t feel restricted just
because a certain method is written a certain way or has a certain interface;
add variables and change methods as necessary.

Task 3: Unknown word handling

Right now, any word the tagger has never seen before will be tagged as
UNK, which isn’t even a valid tag. Fix this by calculating a guess based on
the previous tag: use the distributions p(PrevTag|T ) and p(T ) to figure out
which value for T has the greatest likelihood/score.

When you are building the distribution, you know the actual previous tag
and can store this value; when you are doing the tagging, though, all you
have is what you guessed the previous tag to be. Go ahead and run with
that; it’s the best you’ve got for now. This is called a “greedy” algorithm—
always taking the best option at the moment, locking it in, and then moving
on, never backtracking—and to improve on it you need to do a bunch more
work. Take NLP next term if you want to do better!

NOTE: both in constructing new distributions and in accessing them, make
good use of the helper methods I’ve already written for you! You should
only have to add a few lines of code in just a few places.

Save a copy of this version when you’re done.

Task 4: Making it less dumb

Right now, the tagger only takes into account the current word in selecting
the tag; its conditioning distribution is just p(T |W ). We have more informa-
tion than that, though: we have the previous word and tag (not to mention
the one before that, but let’s not go crazy just yet). Using that would give
us

p(Tag|Word,PrevTag,PrevWord)

4



CS262 Lab 3 20 Sep 2007

but of course this would be a very sparse distribution. The corresponding
näıve Bayes classifier will instead compute the score

p(T )p(W |T )p(PT |T )p(PW |T )

for all values of T and select the highest one. You’re going to implement
this.

There are three potential gotchas here:

1. Remember that the current version computes and uses p(T |W ), but
now you’ll need p(W |T ) instead (in addition to some other new ones).

2. What happens if the previous word was a completely unknown word?
Assuming W and PT were known, then you’ll want to just use the
score

p(T )p(W |T )p(PT |T )

instead. Indeed, this will just be the general case of how we handled
unknown words before: if a word is completely unknown, then the
relevant distribution is ignored when calculating the score. (Program-
matically, you may find it more convenient to say that the relevant
distribution multiplies the score by 1.0.)

3. Even trickier, and don’t address this case until you’ve understood and
gotten the previous ones working, but what if the previous word and
tag and the current word are all known but have not been seen to-
gether? For instance, consider if we are tagging and come to the
following situation:

... VBD PRP IN ??? ...

... retrieved it from under ...
The tags are correct so far. The model has only seen the tag IN (prepo-
sition) for “under”—and this would be correct—but it also has only
ever seen “from” followed by determiners (DT: “the”, “a”) and proper
nouns (NNP: “Chicago”, “Ipanema”) before. So p(T = PRP|PW =
from) = 0, but p(T = NNP|W = under) = 0, and since we’re mul-
tiplying all these things together there will actually be no tag with a
score higher than zero.

There’s a whole other body of research in addressing just this problem,
but we’re just going to take one of the easier solutions. Since we’re
just dealing with scores here anyway, and don’t need to worry about
busting the probability distribution, we can give a low but non-zero

5



CS262 Lab 3 20 Sep 2007

score to all combinations. When we go to look up a probability and
the items are not present in the relevant map—and thus the nom-
inal observed probability would be zero—we will instead report the
probability as 0.000001.3

3You can actually type this value into your program as 1e-6. Convenient, eh?

6


