
CS262 Info Mgmt Blaheta

Lab 1
6 Sep 2007

Today we’ll get an introduction to the “logic programming” paradigm of
Prolog. Since Thursday is Thursday this year, I don’t really have time to
give you a lot of background, so we’ll make this lab a little more discovery-
based. Don’t be afraid to ask questions during the lab, of course, but try to
understand what Prolog is doing here, and we’ll talk about it more tomor-
row.

1 Prolog

Prolog is a computer language quite different from any you’ve seen before; it
is a language for specifying (a subset of) predicate logic. The power of Prolog
is that the reasoning part is all built-in; the “program” you write is just a
set of assertions about what is true. It maps directly to more conventional
logic notation (which you may have seen elswhere, but which in any case
we’ll talk about tomorrow), though it appears superficially different.

The simplest ‘sentence’ of Prolog that you can write asserts that a certain
predicate is true of a certain entity. For instance,

rainy(today).

indicates that the rainy predicate is true of today. We could also say

rainy(yesterday).

which asserts the same predicate to be true of a different object, or

cloudy(today).

NOTE: there are two important, if unobvious, syntactic features of these
three lines. There are no spaces between the predicate and the parenthesis;
and each line ends in a period. Getting either one wrong yields an unhelpful
syntax error.

Create a new file named weather.pl, and type the above three lines into it.
Save it. In another window, start the program pl, which opens the Prolog
interpreter. It prints out a header message and then gives you a prompt:
“?-”. Load the file you just typed in using Prolog’s square bracket operator:



CS262 Lab 1 6 Sep 2007

?- [weather].

Did it compile correctly? Hopefully the answer is

Yes

but if not, go and fix the file (and reload it) before you continue.

Now that a few facts are loaded up, you can query Prolog about them.

?- rainy(today).

Yes
?- rainy(yesterday).

Yes
?- rainy(tomorrow).

No

Seems awful certain of that, eh? Think about that “no” answer—it’s im-
portant, and we’ll talk about it in class later.

Also, query whether cloudy(yesterday). But we’re about to fix that.

2 Rules

As a general rule, even if we don’t have explicit evidence of cloudiness, if it
rained on a given day we’d be prepared to say it was cloudy, too. To express
that in Prolog, we need a new kind of thing: a rule. Actually, two: in order
to express rules of any interest, we also need variables.

Speaking in English, we would probably express the rule as something like
“if a day was rainy, it was also cloudy.” If we had to avoid pronouns (like
‘it’), we’d probably just introduce a variable: “For any given day X, if X
was rainy, then X was cloudy.” We express this in Prolog as

cloudy(X) :- rainy(X).

which is backwards from what you might expect; the mnemonic is that the
symbol ‘:-’ looks a very little bit like a left-pointing “if-then” arrow, if you

2



CS262 Lab 1 6 Sep 2007

kind of squint at it. Another syntactic note: it’s actually built into the
syntax that variables must at least start with a capital letter. (Conversely,
non-variables like today and yesterday and for that matter rainy all have
to start with a lowercase letter.)

So go ahead and add that rule to your file, and save it again. In the Prolog
window, you’ll have to reload the file (the up arrow is handy here), but now
you should be able to get the expected answer

?- cloudy(yesterday).

Yes

even though that was never explicitly stated: Prolog is inferring the correct
answer.

3 Variables in queries

You can actually use variables outside of rules. Make the query ‘rainy(X).’
and see what happens (don’t forget the period). It’s giving you one possible
value of X that would make that statement true. Hit enter again, and Prolog
cheerfully confirms that Yes, it found a value that worked.

Now try ‘cloudy(Y)’. Note that the variable name doesn’t have to be the
same one used elsewhere. And this time, instead of hitting enter, press the
semicolon key—this says you’re not satisfied with that completion, so it tries
a different one that also produces a true statement (either explicitly given
as fact, or inferred via rules). Keep pressing the semicolon and eventually
Prolog will tell you that No, it can’t find any more ways to fill in the variable.

4 More complexity

Start a new file called family.pl and add to it the following facts:

mother(betty, alex).
mother(betty, chris).
mother(betty, jordan).
mother(debbie, loren).

3



CS262 Lab 1 6 Sep 2007

Prolog lets you have predicates with as many arguments as you want; you
just have to separate them by commas. The interpretation of these is that
the entity represented by the first argument is the mother of the entity
represented by the second. Save, load this file into the Prolog interpreter,
and try to query whether debbie is alex’s mother, or who-all betty is the
mother of.

The comma lets us make more complex predicates, but it also opens up a
world of complexity in the rules, as well. Consider the following rule:

sibling(X,Y) :- mother(Z,X), mother(Z,Y).

Because you know the English-word meanings of ‘sibling’ and ‘mother’, you
can probably see what this is supposed to do. The way it works is this:
if Prolog can find a single entity to substitute for both occurrences of the
variable Z, so that X and Y have the same mother, then X and Y must be
siblings. Type that rule in, save, reload the file again, and this time make
the following queries:

• Are alex and jordan siblings?

• Are loren and chris siblings?

• Who are all of the siblings of jordan?

Oops.

5 Operators

Mostly, Prolog relies on this fact-and-rule system to do everything, but some
things are just a bit too clunky, so some operators are provided.

?- alex = alex.

Yes
?- alex = chris.

No
?- alex \= chris.

Yes

4



CS262 Lab 1 6 Sep 2007

Why did they pick ‘\=’ for their not-equals operator? I’m not sure. The !
does something else, so maybe they wanted to reserve it. Back when Prolog
was created, there wasn’t really any one standard not-equals operator.

In any case, modify the sibling rule to be a non-reflexive relation, and test
it.

6 More play

If you add the rules

father(frank, loren).
father(frank, alex).

and ask about siblingness, Prolog will tell you

?- sibling(loren, alex).

No

but that’s not right. Add a rule that will fix it.

Add the following predicates to the system, one at a time, making sure to
test each one (adding base facts as necessary to create test cases) before
moving on. If there is some other predicate you want to implement that
would make these more straightforward, go ahead and do that.

• grandfather

• cousin

• aunt

• ancestor (this one is tricky)

7 Handing in

Make sure you get through at least “cousin” before class tomorrow. What-
ever you’ve finished of the family-tree rules by the end of the lab period,
though, hand it in:

handin cs262 lab1 family.pl

5


