
CS262 Info Mgmt Blaheta

Homework 9
Due: 5 Nov 2007

I have a lot of books. While I’m not quite to the level of a lending library, I
have enough that they’re not all in one place and even if they were I wouldn’t
always be easily able to find a specific thing; it’s big enough that I can’t hold
every fact about my book collection in my head.

This makes it a prime candidate for a database.

It would probably be instructive from a software engineering angle to make
you make me a database, with me as the client you have to satisfy; but that
presents too many logistical difficulties and is above and beyond the call for
this course. So, instead, I’m going to have you use yourself as a client and
make a database for something you have a collection of; it needn’t be books,
but the collection you have in mind should have the properties I list in the
first paragraph above. In particular, the data set should be rich enough to
be interesting: probably at least three entity sets and at least four or five
relationships. More complexity is fine, although don’t make it so big that
it becomes infeasible. (You can’t use the music-file example we did in class,
but there are other music-related data sets that could work.)

If you’re stuck for ideas or just want to confirm that your idea will work,
feel free to drop me an email about it.

Problem 9.1

Having selected a collection of stuff you own, have access to, or otherwise
are familiar with and care about, draw out an E-R diagram to represent the
data about this collection in a useful way.

Problem 9.2

Concisely but in prose form (i.e. not a bullet list), explain why your E-R
design is appropriate to the task. Take account of the database design
principles we discussed in class.



CS262 Homework 9 5 Nov 2007

Problem 9.3

Write out a relational database schema based on your E-R diagram. Show
your work—that is, explain your reasoning on why each table in the schema
is a correct translation of some portion of the E-R design.

Problem 9.4 (×2)

Code up an implementation of your database.

The UI for this can be either an applet or an application, but should have:

• A text box for the filename, and a button to create/load it

• For each table in your schema, one text box per column, and one
associated button to add the entry to the table

• For each entity set in your E-R design, a text box where a user can
type in a piece of identifying information (e.g., in my example, for
an Author, the last name), and an associated button to click which
will summon all the relevant information about that entity, including
the relationships in which they participate. This should be entirely
implementable using simple SELECT . . . WHERE . . . queries.

• A big text box into which all the query results get dumped. Each new
query clears the box before putting its results in.

• A Quit button.

The interface need not be pretty (and indeed in the applet style we’ve been
using, pretty much can’t be), but it should be functional. This also applies
to query output sent to the big text box. The result of making updates or
queries before a file has been loaded is undefined (i.e. it’s not your fault, for
now, if it makes the program crash).

The back end will use the SQLiteJDBC driver for Java. This interoperates
with the sqlite3 executable, which may make testing somewhat easier. To
get started, first you’ll need to add the file

/home/courses/cs262/sqlitejdbc-v037-nested.jar

to your CLASSPATH. The code that handles the top-level interactions with
the database will need to import org.sqlite.JDBC and java.sql.*, and
will have the following structure:

2



CS262 Homework 9 5 Nov 2007

Header

Class.forName("org.sqlite.JDBC");
Connection session = DriverManager.getConnection("jdbc:sqlite:" + filename);
Statement stmt = session.createStatement();

The first statement forces this particular driver to load itself. The second
creates a Connection object from the given URL; this object is essentially
equivalent to a single session at the terminal with sqlite3, into which you
would type your updates and queries and get responses. You could theo-
retically have many such objects open on different database files, or even
on the same database file (remember ACID?). The third statement creates
an extra layer of indirection between the program and the Connection; this
only becomes relevant if you plan to be scrolling through results of multiple
queries at once. (See the documentation for Statement for more details.)

Updates

To process an update, you literally send exactly what you would type into
the sqlite3 session to a Statement object:

stmt.executeUpdate("create table person (name text, age integer);");
stmt.executeUpdate("insert into person values (’Chris’, 25);");
stmt.executeUpdate("insert into person values (’Alex’, 18);");
stmt.executeUpdate("insert into person values (’Sam’, 27);");

That string needn’t be a literal, of course, and in a real program certainly
wouldn’t be, at least not in general.

Queries

Queries are similar, in that you are feeding precisely what you would type
at the sqlite3 session into the Statement object. The difference is that
queries have return values, aka results, that need to be stored and processed.
One might expect this to be done via some sort of Iterator, but one would
be wrong.

ResultSet tab = stmt.executeQuery("select * from person;");

3



CS262 Homework 9 5 Nov 2007

while (tab.next()) {
System.out.printf ("Name: %s Age: %d\n",

tab.getString("name"), tab.getInt("age"));
}
tab.close();

Quite frankly, this is a little gross, but you do what you gotta do.

Footer

session.close();

Clean up after yourself! This will commit any updates if you aren’t already
in autocommit mode.

There are also a few exceptions that Java will make you handle or declare,
but I’ll let you discover those on your own. The docs for all the various
SQL-related classes are in the java.sql package in the Javadocs.

A preview of the rest of the term

Hwk 10

A few problems on E-R diagrams and relational algebra. It will go out
Wednesday and be due Friday.

Hwk 11

You will improve on whatever you wrote for this homework. There will be
two “tracks” here, from which you’ll select one:

• Track 1: Do a good UI for your database.

• Track 2: Beef up the back end of your database to make use of more
than simple SELECT . . . WHERE . . . queries.

A more detailed spec will go out next Monday, and the project will be due
the following Monday, 12 November.

4


