
CMSC445 Compiler design Blaheta

Project 1: Calculator
Due: 3 February 2012

This project will have you writing a compiler for a very small arithmetic
language that translates programs in that language into a simplified subset
of Perl. The source language has been designed to reduce or remove the need
for a lot of compiler techniques that we’ll cover later; the main purpose of
this is to get you used to the compiler pipeline.

1 The language

This is the grammar for the language you’re translating:

expr ::= term + term Addition
| term - term Subtraction
| term term Multiplication
| sqrt term Square Root
| term sq Square

term ::= number
| (expr)

A number is a sequence of one or more base-ten digits, and is interpreted
as a base-ten integer. A complete program in the source language is one or
more lines, each of which contains exactly one expr.

All tokens are separated by whitespace.

There are a few possibly-unexpected consequences of setting up the grammar
as I have; for instance, the following are all not valid examples of expr :

2 + 3 + 4

2

(2) + (3)

sqrt (4)

2 + (3 + 4)

These, however, are valid exprs:

2 (4 + 5)

(2 + 3) (4 - 5)

CMSC445 Project 1: Calculator 3 February 2012

2 The output

The output will be a valid Perl program that performs the computations
and prints out the result of each computation, one per output line. Here is
everything you need to know about Perl to accomplish this:

The first line of the file should be #!/usr/bin/perl .

There is a printf function that works just as in C, C++, and Java.

There are operators +, -, and * that work just as in C, C++, and Java.

There is a sqrt function that works just as in C, C++, and Java.

There is an operator ** that does exponentiation, e.g. 2**7 is 27 or 128.

3 Your program

Your program will perform all the major stages of compiling (translation),
most of them fairly straightforwardly.

Lexical analysis. Since every token is separated by whitespace, you can
use the default behaviour of the C++ stream input operator (>>) for
this; since there are no identifiers in the language you needn’t worry
about a symbol table.

Parsing. Your parser will be a fairly simple example of a “recursive-descent”
parser, and can be fairly ad-hoc; every time you go to read an expres-
sion, either it starts with sqrt, or a left paren, or a number. If it’s
a paren, you call the “parse expression” code recursively, and it will
return the representation (tree) of that whole expression. If it’s a num-
ber, you have a leaf node. And so on. The grammar is simple enough
that you don’t need any of the advanced parser techniques from later
(and you don’t need to write separate functions to parse expr and
term).

Semantic analysis. You’ll skip this; no type checking or other verification,
all expressions are just numbers.

Code generation. After you have a parse tree, you’ll traverse the tree and
have the expression and each of its sub-expressions generate the code
that would compute the corresponding expression in Perl.

2

CMSC445 Project 1: Calculator 3 February 2012

4 Other notes

Your executable should accept a filename on the command line, and you
should read your input program from that file and write your output to
a similarly-named file that ends in .pl (which is the extension for Perl).
Make sure to call chmod the output file so it is executable (man 2 chmod for
details).

You can assume that every input file is valid. Don’t worry (for this project)
about checking the syntax; you’re just parsing it to set up the syntax-driven
translation.

You probably want to have at least two concrete classes, one for the internal
nodes (operators) and one for the leaves, plus a superclass that they both
inherit from; it’ll make the code walk easier. If you’re comfortable with
OO design you might want separate classes for the binary operators (plus,
minus, times) and the unary operators (square, square root).

5 Handing in

On torvalds, you can type

handin cmsc445 proj1 file1 file2 file3

or better, from a parent directory,

handin cmsc445 proj1 dirname

(replacing file1 and dirname with the actual locations of your stuff).

Make sure to include test cases and a readme file with information on how
to compile, run, and test your code. Your test cases should actually verify
that your code works; if you have failing test cases, note this in the readme
(otherwise you’ll lose points for the broken thing and for not testing your
code!).

3

