
CMSC445 Compiler design Blaheta

Homework 3
Due: 23 March 2012

Problem 3.1

On torvalds, copy the files in the directory /courses/445/cparser-model

into your own. This contains a complete recursive-descent parser for the
Project 3a subset, with a few bells and whistles that weren’t required of
your projects (for instance, keeping track of filenames and line numbers).
Read and grok the code.

Particularly look at the parser functions themselves, in cparser.cpp, and
modify them in the following way: in all the situations where a function’s
NULL return value is used to indicate “I can’t handle the current input”,
modify its calling environment to first check if the peeked token is one that
it could handle, so that a parse function is only called if it is definitely able
to handle the (currently peeked token of the) input. Once that is complete,
modify all the functions that return NULL to instead signal a syntax error
using syn fail().

Problem 3.2

There are many places throughout the parser where syn fail() is called to
indicate unparsable input (including, if you’ve finished the previous problem,
a few that you’ve added). Change all of these to provide an argument to
syn fail indicating what was expected—and be more specific than just the
token type when possible. For instance, instead of

syn_fail("semicolon");

you might say

syn_fail("statement-ending semicolon");

instead.

Then, write short test files that each trigger a different syntax error. Each
should include a comment that indicates what the error is, where it is, and
why it’s an error. E.g.

CMSC445 Homework 3 23 March 2012

int x;

char ()

{}

// error on line 2: ident expected before lparen, missing function name

Terseness is fine; there will be a lot of these. (You probably want to put
them in a subdirectory.)

Problem 3.3

Write a bison grammar for a slightly expanded version of our subset of C.
It should accept the same language as the grammar below, although the
.yy file does not need to be a line-for-line reproduction of this copy of the
grammar. Non-terminals that weren’t in the previous subset, and extra
productions for existing NTs, are marked with a star.

Note that your grammar does not need to produce a parse tree, but should
resolve the ambiguities in the below grammar in the same way as is done in
C. (There are three nonterminals that have ambiguous parses according to
this grammar, and they’ve all come up before.)

You should include test cases, both for files that parse and for files that
shouldn’t. (For this you can use many of the same files as in the previous
problem.)

c-file:
top-level EOF
top-level c-file

top-level :
func-def
func-decl ?
var-decl

func-def :
type ident (opt-params) { decls stmts }

func-decl : ?
type ident (opt-params) ;

decls:
var-decl decls
ε

stmts:
stmt stmts
ε

var-decl :
type var-list ; ?

var-list : ?
var
var-list , var

2

CMSC445 Homework 3 23 March 2012

var :
ident
* var ?
var [] ?
var [int-literal] ?

type:
char

short ?
int

long ?
float ?
double ?
void ?

opt-params:
params
ε

params:
param-decl
params , param-decl
params , ... ?

param-decl :
type var ?

compound-stmt :
{ decls stmts }

while-stmt :
while (expr) stmt

stmt :
; ?
expr ;

compound-stmt
if-stmt
while-stmt
return ; ?
return expr ;

if-stmt :
if (expr) stmt ?
if (expr) stmt else stmt

expr :
expr bin-op expr
unary-op expr ?
expr [expr] ?
(expr)

ident
ident (opt-exprs)

char-literal
int-literal
string-literal ?

opt-exprs:
exprs
ε

exprs:
expr
exprs , expr

Binary operators include:

= + - * == != % / << >> < <= > >= && || += -= *= /=

Unary operators include:

+ ++ - -- !

3

