
CMSC389 Artificial Intelligence Blaheta

Project 3: OCR
Due: 26 April 2016

One of the tasks often used to demonstrate and describe neural networks is
that of visual recognition: how to take an image and process it to identify
what it contains? In this project, you’ll build networks to perform optical
character recognition on digits in images.

The MNIST corpus

In the shared directory (/home/shared/389/) I have put a copy of the
MNIST corpus of handwritten digits. This data contains one digit per 28x28
greyscale image, and the images have had some preprocessing done to resize
and reposition them into a standard layout. The directory has a link to
further information about the data, including its source and some of the
high-performance OCR models that have been published to classify it, but
the most important part of that link is the one that tells you the layout of
the data files.

I will not fully recap it here, but note that each data file contains thousands
of images, in binary format. You will need to do a little work to read in the
data, before you can really start applying any neural networks.

The other thing to note is that the data is already split for us into training
and testing. We will follow the standard split: use the 60k training images to
build your model, and then the 10k test images to evaluate its performance.

Checkpoint

As usual, there’s a bit of grunt work to front-load before we can get to the fun
stuff. For the checkpoint, I want you to write a program that is capable of
processing the MNIST data files and producing image files to show what the
data looks like; your program should take three command-line arguments to
identify the index of the image you want to extract, the file containing the
images, and the file containing the labels (in that order). It should produce
a file in the PGM format (see below) that shows the visual representation
of that image from the file.

CMSC389 Project 3: OCR 26 April 2016

For the input file format, see the link in the mnist directory; and note that
for the data stored as 32-bit integer that the endianness of the data files
is the opposite of that used on our linux systems, so you’ll need to use a
byteswap function or otherwise deal with that.

Because graphics per se are not the overall focus here, we’ll be using a
graphics format called PGM, which isn’t very efficient but is very easy to
read and write. In fact, we’ll process a subset of it, whose files begin as
follows:

P2

#Comment about the file

28 28

255

The P2 identifies it as a PGM file in ASCII format; the other three numbers
identify, respectively, the width, the height, and the maximum grey level
for a pixel (which ranges from 0–255). After this header, there follows a
whitespace-separated list of greyscale values, one per pixel, in row-major
order. The comment should include the name of the source file, the index
number, and the correct label for this image.

Most standard Linux image viewers (such as eog) can display this format.

Your checkpoint program can dump this file to a hardcoded name (like
img.pgm), or to standard input, or take a fourth command line parameter
for purposes of output file naming. Your documentation should say which,
so I can test it.

You will probably want to keep this program around intact as you continue
on to the main project, as it will let you inspect some of the training data
that you’re working with; but you’ll want to build the main project as a
separate executable. So, you might want to pull some of this into separate
functions/methods in a separate file.

The goal

Your final version will read the training set and use it to train a multilayer
neural network to classify images according to which numeric digit they
contain. It will then read the test set, classify its images and compare with
the correct answer, and report its results.

2

CMSC389 Project 3: OCR 26 April 2016

A vital part of your program’s output will be reporting on what’s going on
internally (i.e. your program can’t just output a single final performance
percentage!), but its exact format is largely up to you.

Note that once you’ve got the checkpoint done (and have seen how easy it
is to generate PGM files), producing an image as a visual representation of
a vector of weights may be the most effective way to understand what the
perceptrons are training up to: as long as you scale your numbers to the
range [0, 255], the image should work, and will show you which input pixels
a particular neuron is focusing on.

Handing in

The checkpoint and the final version are due at 4pm on their respective due
dates. Hand them in as proj3 using the handin script.

Don’t forget documentation! And appropriate output that will help me
understand how you think you’re meeting the rubric requirements.

3

CMSC389 Project 3: OCR 26 April 2016

Rubric

Score Description

Input handling:

10 Reads at least one training image from a file (per checkpoint); can
generate a .pgm file representing image data (per checkpoint) and/or
weight data. *

10 Reads in and stores all training data for further processing. *

Simple perceptrons:

10 Makes multiple passes through the training data, trains at least a
single perceptron to classify images as zero or not zero. *

10 Trains a complete output layer of ten perceptrons, each associated
with one digit, and can report the “winner” for any given input. **

Multilayer neural network

15 Feeds image data forward through at least one hidden layer to output
layer, classifying image accordingly.

5 Performs any substantial backpropagation of error to adjust weights
on neurons in hidden layer.

10 Backpropagates error to update hidden-layer weights according to
the algorithm discussed in class and in the textbook.

Classification and results

5 Reads at least one image not from the training, and classifies it. *

5 Reads all images from a test file and classifies them. *

10 ...and compares classification of each with its correct label and re-
ports results. **

10 Meaningfully compares results from different system configurations,
and reports and interprets the differences.

* Try getting these points done first. They add to 40 rubric points, which
on top of checkpoint and documentation is 90/C.

** These next; 60 makes 110/B−.

4

