
CMSC389 Artificial Intelligence Blaheta

Project 2: Swype
Due: 5 April 2016

Swype is an input system for phones that lets you type imperfectly (or, in-
deed, just drag your finger across the relevant “keys”) and interprets your
input as valid English. There are a few layers to this, involving both estimat-
ing what you might be trying to say (the “language model”) and estimating
how your fingers might slip as you try to type it (the “error model”). In
this project, you’ll implement a limited imitation of this system.

Checkpoint

The checkpoint will give you a head-start on building your language model.
For the checkpoint (next Tuesday), you should have a program that:

• gets filenames from the command line arguments,

• opens the corresponding files and reads words,

• strips their punctuation and makes them all lowercase,

• stores their frequencies, and

• prints out a table with the probability of each word in the input.

When stripping punctuation, for now you need only look at the start and end
of a token; remember that hyphens and apostrophes are generally considered
part of the word they’re inside!

Don’t forget: documentation is not an explicit part of the checkpoint grade,
but you will need to give me enough info, somehow, that I can be convinced
you’ve done all the above things without having to pore over your code!

Language models

The idea of a generative language model is to assign probabilities to “ut-
terances” (i.e. sentences) according to the likelihood that a speaker would
ever produce them if they were producing valid English at random. A com-
plex and advanced language model might take into account various aspects



CMSC389 Project 2: Swype 5 April 2016

of grammar and lexical categories (parts of speech) and overall sentence
structure. (What is the probability we start with a noun phrase? What
is the probability that the noun phrase starts with a determinative? What
is the probability that the determinative is “The”? ...etc.) In this project,
though, we’ll be dealing purely with word-based Markov models: they’re a
good tradeoff between predictive power and implementation complexity.

The simplest of the word-based language models is the unigram model—
meaning “one word”—and the generative aspect of this is that you could
imagine a babbler rolling dice before every word, and choosing the word
to utter based on a weighted probability distribution of all English words.
No sentence context or any other conditioning environment applies. If the
word “the” occurs 4% of the time, then it will have a 4% chance of being
produced (even if it was just produced, which means you have a 0.16%
chance of producing the pair “the the”!). This kind of model is also known
as an order-0 Markov model.

The next level of this that we’ll see is a bigram (“two word”) model. Here,
the probability of producing a word is conditioned on what word came before
it (or, if it is the first word of an utterance, conditioned on that fact). The
unigram probability of a word like “is” is relatively high, occurring a bit
less than 1% of the time; but the probability of “is” given that the previous
word was “the”, that is,

P (wi = is |wi−1 = the)

, is vanishingly small. The phrase “the is” just doesn’t occur.1 A bigram
model is an example of a first-order Markov model.

In practice, the bigram model is great when there’s enough data—that is,
when the previous word is a frequent one—but with less common words it
has a harder time. There are various ways to mitigate this but the easiest
is to interpolate, or take a weighted average, of the unigram and bigram
probabilities. For our purposes, we’ll make the weighting constant: give 0.8
weight to the bigram model and 0.2 to the unigram.

Finally, there is a question of what to do with words that are not just rare
but entirely unknown in the training. In some applications we can glibly
assign a very low “probability” to such cases, but this breaks the generative
distribution, and anyway there are more elegant solutions. In our language

1Except when, rarely, it does—as in fact it does on this page! This is why I so dislike
assigning zero probabilities.

2



CMSC389 Project 2: Swype 5 April 2016

model, we can observe that words that appear only once in the entire training
set are appearing in the same sorts of environments that unknown words
would show up in, and use this information to manufacture statistics for
a special word “UNK”. In the unigram model, count the number of words
that only appear once in the training,2 and then add the word UNK to the
model with a frequency matching that count. For the bigram model, you
can similarly aggregate the counts of words that occur immediately after
unique words, store them as occurring after UNK as well, and use those
counts to estimate bigram probabilities of words given that the previous
word was unknown.

Noisy channels

Our ultimate goal here is to build a discriminative model that chooses be-
tween a number of possible words that a user may have meant to type, based
on what they actually did type (and some context), and choosing the most
likely one. That is, if we see an emitted word e,

arg max
w

P (Intend = w|Emit = e)

We’ll talk about the noisy channel model in more detail in class (or you can
read about it in the book or online), but for now, suffice to say that imple-
menting the above discriminative model requires building two component
models: a language model P (Intend) and an error model P (Emit|Intend).
Error models (aka “noise models”) encapsulate the mechanism by which
errors—in our case, typoes—occur. Given that a user intended one word,
what’s the probability of emitting that word correctly, or some similar one
instead? Most of the letters will usually be typed correctly, but with some
(low) probability, the user might press a different key. Or an extra key. Or
they might miss a key.

In a very simple error model, we might say that when a letter substitution
occurs, the choice of substitute letter has uniform probability. But really, on
a standard QWERTY keyboard, substituting an H for a J is waaaay more
likely than substituting, say, a Q for a J. It turns out that there are quite a
few ways the brain can cause typoes, but for this project we’ll assume only
the more mechanical slips, involving adjacent keys, are relevant. We’ll work

2Trivia: such a word is called a hapax legomenon, plural hapax legomena.

3



CMSC389 Project 2: Swype 5 April 2016

out some more detail on this error model in class, and the final exact details
will be up to you.

Training data

You should build your own training data with a very small number of words
in it, in order to test your code with known data. But your program should
also be able to work with real data, at scale. To that end, in the directory
/home/shared/nlp there are files nanc20.txt through nanc2000.txt that
are increasingly larger subsets of the contents of the North American News
Corpus. Don’t copy them—they are licensed—but your program should be
able to make use of them for training.

It’s ok if your program takes a few minutes to read in and do the initial
processing of the largest of them, but a) it still shouldn’t take (say) hours,
and b) the actual processing of the standard input, with suggested spelling
corrections and so on, should still be pretty snappy. This has some very
important implications on your data structure choices.

Final version

A full-credit final version will be a complete, non-buggy, working imple-
mentation of a noisy-channel typo correction system, TOGETHER WITH
convincing proof that it is correct. The “proof” should consist of test cases
(in whatever format is convenient to you) to illustrate various situations,
including both input and expected results.

Remember that there need to be clear instructions on how to run it in general
as well as how to run each/all of the tests and quickly verify that they ran
correctly (and which rubric items each one corresponds to); and don’t forget
to explain how to enter actions and interpret the display! Having complete
and correct documentation is an easy 25 points, but if your documentation
omits important info or tells me the wrong thing, you’ll get less than full
credit there.

After checkpoint work (25 points) and documentation (25 points), there
remain 100 points in the rubric, which will be awarded according to the
table below. Note that number of points does not necessarily correspond to
difficulty; and you should probably implement the first items of each rubric

4



CMSC389 Project 2: Swype 5 April 2016

group before you move on to any other part of the implementation. (Within
groups they generally proceed in order of suggested implementation.)

If your program is too slow to work effectively on real data, it won’t get full
credit. I am still working out how that will affect the rubric. If you need to
know more about how it will affect the rubric, come talk to me.

Score Description

Input handling:

10 Reads training data from files, strips punctuation, and prints (in
either regular or debugging output) unigram probabilities per the
checkpoint description.

5 In the training, sentence-ending punctuation is treated as divider
between utterances (and if bigrams are used in the language model,
this information is incorporated), and punctuation-only words (which
turn into empty strings) are removed gracefully.

5 Reads whole lines of standard input as distinct utterances, breaks
them into words (lowercase, stripped punctuation). Prints back full
sentence in this form (with words as edited, if menu of candidate
words is implemented).

Language model evaluates (and, in regular or debugging output, prints)...

5 ...unigram probability of each word of input.

10 ...bigram probability of each word of input (with “previous word” as
edited, if menu of candidate words is implemented).

5 ...linear interpolation of unigram and bigram probability of each word
of input.

10 ...bigram or interpolation, with appropriate unknown-word handling.

For each word of input, program generates and prints a complete list of
candidates...

5 ...of same length, with exactly one letter changed.

10 ...with one inserted letter.

5 ...with one deleted letter.

5 ...with insertions, changes, or deletions, up to an edit distance of 2.

5



CMSC389 Project 2: Swype 5 April 2016

Candidate words menu:

5 Each word of input’s candidate lists (plus the original word as typed)
is printed in a numbered menu for user to select from...

5 ...sorted by language-model-based likelihood score, which is printed
next to each candidate (including the original word). (Score should
be based on full noisy-channel model if error model is implemented).

Error model assigns probabilities to each candidate in list (and, in regular
or in debugging output, prints them) according to...

5 † ...fixed probability .975 per letter of no change and .001 per letter of
changing to each of 25 other possible letters.

5 † ...fixed probability model allowing for insertions and deletions but
each possible letter has equal probability in generative model.

15 † ...probability model permitting all three edit types that accounts for
keyboard adjacency when generating changes and insertions.

† The three error-model rubric items are mutually exclusive, i.e. you get 5
or 15 points for these, not a total of up to 25.

Handing in

The checkpoint and the final version are due at 4pm on their respective due
dates. Hand them in as proj2 using the handin script.

6


