
CMSC381 Graphics Blaheta

Project 3
Due: 8 May 2017

Edited as of 2:30pm on 2 May (see Option 1)
Edited as of 4:50pm on 7 May (see Option 1)

This is the assignment that will count for 20% of your “5th assessment”
grade. The remainder will come from your score on the prior assessment
that you choose to re-do. (The re-done assessment will also be averaged
with the old score on that assessment, boosting the score in that assignment
as well.)

For this implementation, you will choose one of the following four options.

Option 1: Mesh rendering

In an environment with either camera control (buttons, sliders, etc) or au-
tomatic movement that rotates the camera around the object or rotates the
object (so as to view the object from all angles): display a polygon-rendered
mesh.

Intro version: Render a simple mesh of three quadrilaterals in a short strip
(use the coordinates posted online).

Full version: Render the Utah teapot (use the coordinates posted online).
This will require managing a set of indices into a shared vertex array. Some
of the points need to be reflected about various axes to generate the entire
teapot. The teapot should be visible at a reasonable scale and (with controls
or camera movement) from all/most angles.

Edited to add: The data for the teapot is grouped into “patches” of 16
points—to be clear, this represents a 4x4 grid of points (hence a 3x3 grid of
quadrilaterals). The data for the intro strip is 8 points in a 4x2 grid* (so,
three quads). I’ve edited the point and patch data to clarify this a little.
You should get it displaying as solid triangles with lighting and different
normals (although points and line strips could be useful for debugging!) but
can get full credit even if the normals are not quite right, especially in the
reflected parts.

*Edited again to add: The 4x2 grid is row-major; the first four points
are the first row and the last four points are the second row. It’s a lot like



CMSC381 Project 3 8 May 2017

the first half of a patch (which was intentional). If you plot the points of
the strip by hand you should see how they form a strip.

Option 2: Scene graph

Model and render a cluster of primitive objects in a scene, where subordinate
objects are modeled by their transformation matrix relative to their “parent”
object.

Intro version: Model and render a “house” where the roof is a cube rotated
45 degrees to make a peaked roof; the roof object should be subordinate to
the base house object, so somewhere should be a single composed transfor-
mation matrix that, if changed, would move/rotate/scale the entire house
as a unit. (This change does not need to be doable via HTML controls; it’s
ok if it requires editing the js source.)

Full version: The root scene will have a house (two parts), a tree (two parts),
and a humanoid figure (very loosely construed; at least six parts, with the
torso being the parent of the head and four limbs). All objects may be
rendered using only cubes and cylinders, even if this is... somewhat stylised.

Option 3: Texture map

Use texture mapping to display an external 2D image in a 3D rendered
model.

Intro version: Access a GIF or PNG file and map it onto a single (two-
triangle) rectangle that is floating in the 3D space. The camera should be
at an angle relative to the rectangle, and a perspective transform should be
used, so we can see the mapped image distorted and 3D-looking.

Full version: The 2D image should be wrapped around a cylinder (think
Coke can). Ok if ends of cylinder are solid grey or whatever. Camera should
be controllable or should automatically move to display most/all angles of
the object.

2



CMSC381 Project 3 8 May 2017

Option 4: Parametric curves

Use numeric solving on parametric functions to display a relatively smooth
curve.

Intro version: Render a semicircle as a parametric curve where u ranges
from 0 at one end to 1 at the other. Clicking a point in the canvas should
move either the centre of the circle or one of the endpoints of the semicircle
to that point. The centre and both endpoints of the semicircle should be
drawn as visible, large points.

Full version: Render a Bézier curve with four control points. The control
points should be drawn as visible, large points. There should be some way
to select each of the four control points (HTML buttons are fine, doesn’t
need to be fancy) and once selected, clicking in the canvas should move the
selected control point (and update the curve accordingly).

Rubric

The first ten points (of 20) are for doing the intro version and documenting
it well enough that I can see what you’ve done.

The remaining ten points are assigned to upgrading that into the full version.
Partial credit is available.

Handing it in

I do want you to hand in all the files for this, including a readme; but the
readme should also include the URL that I can use to run/test your code.
The handin command is

handin cmsc381 proj3 dirname/

The project is due at 5:30pm on the due date, i.e. the end of the exam
period.

3


