
CMSC381 Graphics Blaheta

Project 2
Due: 24 April 2017

This is the basic assignment: model a scene with multiple objects including
a sphere, a cylinder, and either another sphere or another cylinder, with
multiple light sources and controls to adjust the locations of the objects, the
light sources, and the shading model; plus some additional element of your
own.

Now let’s break down what that means and clarify the constraints.

Elements

The scene should include at least one sphere and at least one cylinder. The
sphere will probably be based on the one we’ve been designing; the cylinder
you’ll have to write additional code for. The scene should also have either a
second sphere or a second cylinder (and may have additional things, if you
like). The duplicate object should not be generated from scratch; it should
be built by applying a transform to some already-existing object. (Ideally,
by creating some “reference” object, like the unit cube or the unit sphere or
a unit cylinder or whatever, and then generating the in-world version of that
object by multiplying the reference object by a transform. See scene-fixed
for examples.)

Movement of the objects in the scene should be controllable by the user.
There should be some movement controls that move the scene objects en
masse, and some movement controls that move only one of the scene objects,
or moves them apart, or otherwise affects the scene objects differently.

Lighting should have at least two light sources and at least one of them
should be user-controllable in intensity and direction.

Shading should follow the Phong lighting model, including ambient, diffuse,
and specular components, with different objects having different shading
properties; user controls should be able to switch between flat (constant)
and smooth shading, and between per-vertex (Gouraud) and per-fragment
(Phong) shading.

The multiple objects represent a bit of a departure from our main running
example (and the book’s), which you’ll accomplish by a mixture of re-binding



CMSC381 Project 2 24 April 2017

buffers and sending different uniform values to the shaders, between calls to
drawTriangles. Many of the rubric items are available even without getting
this working; the ones that require it as a prerequisite are marked.

The additional element should be something that uses some aspect of We-
bGL lighting/shading or buffers or attributes and variables that we haven’t
really talked about. Some options include attenuating light with distance
from the light source, implementing different kinds of light sources, or read-
ing a mesh from a data list; but feel free to be more creative. Your addition
shouldn’t substantially interfere with the core functionalities described in
the other paragraphs unless you talk to me about it first.

Rubric

The first twenty points (of 100) are for the very basics: do you include
documentation that tells me where to go and what it does, and does your
program successfully display a canvas that has something on it.

The rest of the points are for the following items, at 5 points each:

Scene: includes sphere

Scene: includes cylinder

Scene: displays three or more objects simultaneously, including at least one
sphere, at least one cylinder

Scene: includes at least one repeated object type, without using a whole
separate buffer of points

Scene: “duplicate” objects differ visibly in some shading-related property
(such as diffuse color or shininess), (requires multiple objects)

Movement: some controls move the object(s) as a system of objects

Movement: some controls move objects with respect to each other (requires
multiple objects)

Lighting: controls can change the location of (one of) the light source(s)

Lighting: scene contains multiple light sources at different locations with
different properties (brightness and/or hue)

Shading: can show a flat/constant-shaded view of the model (with at least
diffuse shading implemented)

2



CMSC381 Project 2 24 April 2017

Shading: can show a smooth-shaded view of the model (with at least diffuse
shading implemented) (either per-vertex or per-fragment)

Shading: button or key switches between flat and smooth shading (either
per-vertex or per-fragment)

Shading: when smooth shading is activated, different button or key switches
between per-vertex and per-fragment shading

Shading: one or more objects displays visible specular reflection

Shading: different objects have different specular properties (requires mul-
tiple objects)

Additional: you add something and it works

Note that a full-point submission will generally be a single set of files, but
partial-credit versions might be spread over multiple implementations: for
instance if you didn’t get multiple objects working, you might have one set
of files displaying a sphere and another displaying a cylinder. If you do this
you must clearly indicate in your readme what I’m supposed to be looking
at for the different rubric items.

The “controls” described in several rubric items are up to you: they can
be keyboard-based or can be buttons or some other HTML control, but
however they work you should make sure they are clearly documented.

3


