
CMSC262 DS/Alg Applied Blaheta

Project 2: Spamassassin
Due: 2 October 2019

In this project you’ll write a system that is essentially the core piece of
Spamassassin (and some other spam filters): a näıve Bayes classifier.

The exact details of such classifiers will be covered in class over the next few
days, but the basic idea in this application is that you have to answer the
question, “based on the words in this email, is it more likely to be spam, or
more likely to be non-spam?” To do this, your program will need to train
itself on an established body of data—known as a corpus1—that contains
both spam and ham,2 and learn some statistics about the sorts of words
that appear in the two different kinds of email.

Objectives

In the course of this project, the successful student will:

• implement a näıve Bayes classifier based on empirically-observed data,

• manage multiple open files to read data distributed throughout several
directories in the filesystem,

• use maps/dictionaries to maintain frequency information of words in
different contexts, and

• apply standard techniques for probabilistic computation in the pres-
ence of very small numbers and absent data.

The data sets

I’ve downloaded the LingSpam corpus (Androutsopoulos et al 2000) and
made it accessible from the /home/shared/262 directory. Inside the direc-
tory lingspam public you’ll find a few subdirectories with slightly different
versions of the corpus; to begin with, use the bare directory, which has files
with the smallest amount of preprocessing.

1Plural corpora, which is pronounced COR-prr-ruh, because Latin.
2That is, non-spam. Because ham is what you’d rather get.



CMSC262 Project 2: Spamassassin 2 October 2019

The corpus is divided into ten roughly equal parts, and within each part
there are two kinds of files: ham, whose names start with numbers, and
spam, whose names start with sp. Within each file is three lines: one
that gives the “Subject:” line of the email, a blank line, and then one that
contains the entire body of the email, broken up into individual words (with
punctuation marks counting as separate words), separated by spaces.

For convenience, I’ve put a full index of all the email messages in a file called
index. That means that if your program knows to look in the directory
/home/shared/262/lingspam public/bare/ and the index has a line like
part1/3-378msg2.txt , you should be able to just concatenate those two
to get a filename that you can open with an ifstream or a Scanner or
whatever. (Even if you do know how to list directories at runtime, you
should still use the index—it makes it a little easier to build and control
your test cases. If you are thinking about reaching for a DIR* and dirent,
you are barking up the completely wrong tree.)

Prep work

Unlike the last project, I’m not giving you any code to start from. Your
initial work involves getting the outer shell of the program running: getting
a directory name as a command line option,3 opening the index file in
that directory, reading the filenames it lists, and looping through to open
and process each of the files in directories labeled part1 through part9

(i.e. excluding files in parttest) of the corpus.

To demonstrate that you’ve done this, your checkpoint program will print
(to standard output) the first “word” in the body (that’s the third line) of
each of these files, each on its own line.

Thus, if run with an argument of /home/shared/262/lingspam public/bare/ ,
the first few lines of output would be

>

the

.

"

could

3If you’re not sure how, look it up or see me. In C++ this involves using argc and
argv; in Java, the args array; and in other languages there are other useful incantations.

2



CMSC262 Project 2: Spamassassin 2 October 2019

and there would eventually be a total of 2602 lines (because you should only
be reading through part 9).4

Note that the filename encodes information about whether the message is
ham or spam: ham filenames start with digits, and spam filenames start
with “sp”. You don’t need to use that information yet in the prep work but
as you start writing your own test cases you should follow that convention
as well.

This work is due next Wednesday at 8pm. You’ll have a chance to ask
questions about it in class on Wednesday to clear up any last-minute issues,
but you really don’t want to wait until then to start it. When you’re ready
to hand it in, use the handin script as described at the end of this document.

Design work

Once you’ve got the shell of the program running (or perhaps while you are
working on that, but the design work depends on course content we won’t
cover until next week), you can start thinking about the algorithm and data
structure design.

1. Devise an extremely short and simple data set that can serve to fuel
test cases. It should have just a small handful of messages, each with
just a few words; their collective contents should be able to test the
different aspects of the empirical data collection system (in particular,
some words should be repeated, and some not).

2. What built-in library data structures will you use to store the fre-
quency information you’ll need to compute the probabilities? Express
the types of these data structures in the programming language you
intend to use (and verify that its library includes those types!). Give
descriptive names to them so you’ll remember what they’re for; and
write out what the contents of those data structures would be given
the data example you wrote out in the previous item.

3. The end goal will be to perform actual classification on messages, based
on comparing the probability that a message is spam given the words

4And if you don’t want to keep typing the full directory name, do not make a full copy
of the files. Instead, you can make a symbolic link; inside your working directory, type

ln -s /home/shared/262/lingspam public/ lingspam

and then you can refer to lingspam/bare/ or whatever.

3



CMSC262 Project 2: Spamassassin 2 October 2019

it contains:
p(S|W ) ∝ p(S)

∏
w∈W

p(w|S)

with the probability that it is not spam given the words it contains:

p(¬S|W ) ∝ p(¬S)
∏
w∈W

p(w|¬S)

In pseudocode or description, indicate how your stored data (from the
previous item) would be accessed and used to compute these formulas.

4. Give some thought to your overall program design. You’ll need to col-
lect information about both ham and spam, and keep that all separate;
and you’ll need to use that information to classify test messages. How
do you plan to organise that? Are there particular functions you might
write (with what arguments and return types)? Are there particular
classes you might define (with what instance variables and methods)?

Write your design work on paper (or do it on your laptop) and bring it to
class; this work is due at the start of class on Monday the 17th. If you’re
really stuck on something, do your best, make a note of it, and move on;
we’ll be discussing this extensively in class.

Final version

A full-credit final version will be a complete, non-buggy, working implemen-
tation of a näıve Bayes classifier TOGETHER WITH convincing proof that
it is correct. The program should be able to run on the provided training
corpus (parts 1–9) of spam/ham email, then classify additional messages.
When run, it should be provided with two command line arguments—the
first is a directory name, and the second dictates subsequent behaviour:

prep tells it to read the training data (parts 1 to 9) and print out to stan-
dard output the first “word” on the third line of each message (as in
the prep work). It may also print out other debugging information at
the end.

dump tells it to read the training data from their files, and print out to
standard output all the observed counts that it has collected.

4



CMSC262 Project 2: Spamassassin 2 October 2019

single tells it to read the training data from their files, and then read a
single message from standard input; and classifies that message and
prints its judgement, either HAM or SPAM, to the standard output. It
may also print out other debugging information, but the classification
should be at the end.

test tells it to read the training data from their files (parts 1 to 9), and
then the testing data from their files (parttest), and classify each
test message independently, printing to standard output each filename
followed by either HAM or SPAM (and possibly some numbers, but just
one line per message). At the end of the test data, it should report
how well it did, giving both precision and recall scores.

A full-credit version will run and report on an experiment comparing the
base version described above with another—the easiest way to do this is
to make use of the fact that the other subdirectories of lingspam public

have the same messages but with some preprocessing done that may or may
not help in detecting spam. If you have other ideas on what might boost
accuracy, let me know and I’d love to help you try it!

Rubric

Note that I am not able to spend a ton of time with your program (and in
fact may not read it at all, and definitely won’t do your debugging for you),
so your documentation will need to tell me anything I need to know to run
and test your program. There need to be clear instructions on how to run
it in general as well as how to run each/all of the tests and quickly verify
that they ran correctly (and which rubric items each one corresponds to).
Having complete and correct documentation is an easy 25 points, but if your
documentation omits important info or tells me the wrong thing, you’ll get
less than full credit there.

After prep work (15 points), design work (10 points), and documentation
(25 points), there remain 100 points in the rubric, which will be awarded
according to the table below. Under each score, I show (for your conve-
nience) the total cumulative points if you get that item plus all the previous
points, and the letter grade this corresponds to. It is arranged roughly in
the order I suggest you attempt them, with the earlier ones being easier or
enlightening with respect to the later ones, but you can in general get points
for the later ones (if they work) without getting the earlier ones.

5



CMSC262 Project 2: Spamassassin 2 October 2019

NOTE: if your code doesn’t compile, or immediately crashes when it’s run,
you will get zero of these points. Don’t let this happen to you!

Score Description

10
(60/D−)

Compiles, runs, and handles prep option. (Extra debugging
info ok.) All implemented options follow I/O spec.

Collecting training

10
(70/D)

Includes ≥ 1 hand-built test directory with appropriate con-
tents and index file and documented expected results.

5
(75/D+)

With the dump option, reads all the training (excluding the
test set) and prints the total number of words in message bod-
ies in training corpus (i.e. one overall count), plus whatever
other counts are gathered for subsequent rubric items.

10
(85/C−)

Gathers word counts for each distinct body word in training
corpus (i.e. separate count for each word)

5
(90/C)

Gathers word counts separately for ham and spam

10
(100/C+)

Word counts represent frequency of documents containing
words rather than overall word frequency

5
(105/B−)

Code to read and train is effectively encapsulated using func-
tions or control structures that will make the exact same code
run when verifying the training (with dump) as when actually
applying it to input (with single and/or test). This item
is prerequisite to all later points (because otherwise how do
you know they’re trained right?). Indicate in documentation
where I should look (file, line number) to verify this rubric
item.

Implementing the classifier

5
(110/B−)

Includes appropriate number of small hand-built test cases,
suitable for redirecting into single, and including docu-
mented expected results

10
(120/B+)

On single option, reads test message and calculates p(w|S)
and p(w|¬S) for each word in message

5
(125/B+)

Word probabilities account for unknown words (never seen in
training, in either spam or ham) and words with empirically-
zero probability (seen in training in spam but not ham, or
vice versa)

6



CMSC262 Project 2: Spamassassin 2 October 2019

Score Description

5
(130/A−)

Combines all conditional terms with prior to give classifica-
tion for individual email

5
(135/A)

Combination of probabilities accounts for and prevents arith-
metic underflow

Testing and evaluating the classifier

5
(140/A)

On test option, evals all messages in parttest directory of
the corpus and prints classifier’s answer for each

5
(145/A+)

Results on test corpus are compared with the known-correct
answer and precision/recall scores are produced. Output
should show work (numerator and denominator as well as
final number).

5
(150/A+)

Compare results under different test conditions (most
straightforwardly, between different subdirectories of
lingspam corpus) and report on the performance differ-
ences.

Handing in

For both the checkpoint and the final version, hand it in as proj2 using the
handin script. The project is due at 8pm on the due date.

Reference

I. Androutsopoulos, J. Koutsias, K.V. Chandrinos, George Paliouras, and
C.D. Spyropoulos, “An Evaluation of Naive Bayesian Anti-Spam Filtering”.
In Potamias, G., Moustakis, V. and van Someren, M. (Eds.), Proceedings
of the Workshop on Machine Learning in the New Information Age, 11th
European Conference on Machine Learning (ECML 2000), Barcelona, Spain,
pp. 9-17, 2000.


